Abstract

This paper proposes a novel wavelet-based method for the computation of the milling stability and surface location error (SLE). The governing equation of milling processes considering the self-vibration and forced-vibration is formulated as a delayed differential equation with state space form. The total time period is considered as a whole, sampled by the Chebyshev nodes. Then, the vibration displacement corresponding to each sampling grid point is fitted by a weighted linear sum of Gegenbauer orthogonal polynomials. A new method named direct differentiation based algorithm (DDBA) is proposed to determine these weight coefficients, which gets rid of dependence on the classic differential operator. On the one hand, the Floquet matrix is constructed to calculate the milling stability. On the other hand, the coefficient matrix independent of time is established to predict the SLE. The benchmark and experimentally verified examples are employed to validate the effectiveness of the proposed approach. The optimal combination of orthogonal polynomials is fixed by exploring the effect of the control parameter on the predictive accuracy. At last, the calculation vulnerability that can cause the prediction accuracy to be dropped obviously in some step lengths is revealed and repaired.

References

1.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling
,”
ASME J. Dyn. Sys. Meas. Control
,
133
(
2
), p.
024503
.10.1115/1.4003374
2.
Dai
,
Y.
,
Li
,
H.
,
Yao
,
J.
, and
Liu
,
S.
,
2019
, “
A Novel Approach With Time-Invariant Transition Matrix for Surface Location Error Prediction in Low Radial Immersion Milling
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1267
1274
.10.1007/s00170-018-2910-0
3.
Dai
,
Y.
,
Li
,
H.
,
Peng
,
D.
,
Fan
,
Z.
, and
Yang
,
G.
,
2022
, “
A Novel Scheme With High Accuracy and High Efficiency for Surface Location Error Prediction
,”
Int. J. Adv. Manuf. Technol.
,
118
(
3–4
), pp.
1317
1333
.10.1007/s00170-021-07153-9
4.
Bayly
,
P. V.
,
Mann
,
B. P.
,
Schmitz
,
T. L.
,
Peters
,
D. A.
,
Stepan
,
G.
, and
Insperger
,
T.
,
2002
, “
Effects of Radial Immersion and Cutting Direction on Chatter Instability in End-Milling
,”
ASME Int. Mech. Eng. Congr. Expos.
,
3641
, pp.
351
363
.10.1115/IMECE2002-39116
5.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
,
2005
, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.10.1115/1.1948394
6.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
,
2008
, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1–2
), pp.
334
341
.10.1016/j.jsv.2007.11.040
7.
Zhong
,
W.
,
Zhu
,
J.
, and
Zhong
,
X.
,
1996
, “
On a New Time Integration Method for Solving Time Dependent Partial Differential Equations
,”
Comput. Method Appl. Mech. Eng.
,
130
(
1–2
), pp.
163
178
.10.1016/0045-7825(95)00876-4
8.
Dai
,
Y.
,
Li
,
H.
,
Xing
,
X.
, and
Hao
,
B.
,
2018
, “
Prediction of Chatter Stability for Milling Process Using Precise Integration Method
,”
Precis. Eng.
,
52
, pp.
152
157
.10.1016/j.precisioneng.2017.12.003
9.
Li
,
H.
,
Dai
,
Y.
, and
Fan
,
Z.
,
2019
, “
Improved Precise Integration Method for Chatter Stability Prediction of Two-DOF Milling System
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5–8
), pp.
1235
1246
.10.1007/s00170-018-2981-y
10.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
A Full-Discretization Method for Prediction of Milling Stability
,”
J. Mach. Tool Manuf.
,
50
(
5
), pp.
502
509
.10.1016/j.ijmachtools.2010.01.003
11.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2010
, “
Second-Order Full-Discretization Method for Milling Stability Prediction
,”
Int. J. Mach. Tool Manuf.
,
50
(
10
), pp.
926
932
.10.1016/j.ijmachtools.2010.05.005
12.
Quo
,
Q.
,
Sun
,
Y.
, and
Jiang
,
Y.
,
2012
, “
On the Accurate Calculation of Milling Stability Limits Using Third-Order Full-Discretization Method
,”
Int. J. Mach. Tool Manuf.
,
62
, pp.
61
66
.10.1016/j.ijmachtools.2012.05.001
13.
Qin
,
C.
,
Tao
,
J.
,
Shi
,
H.
,
Xiao
,
D.
,
Li
,
B.
, and
Liu
,
C.
,
2020
, “
A Novel Chebyshev-Wavelet-Based Approach for Accurate and Fast Prediction of Milling Stability
,”
Precis. Eng.
,
62
, pp.
244
255
.10.1016/j.precisioneng.2019.11.016
14.
Qin
,
C.
,
Tao
,
J.
,
Shi
,
H.
,
Xiao
,
D.
,
Li
,
B.
, and
Liu
,
C.
,
2020
, “
A Legendre Wavelet–Based Stability Prediction Method for High-Speed Milling Processes
,”
Int. J. Adv. Manuf. Technol.
,
108
(
7–8
), pp.
2397
2408
.10.1007/s00170-020-05423-6
15.
Lin
,
C.
,
2017
, “
Comparative Dynamic Control of synRM Servodrive Continuously Variable Transmission System Using Blend Amend Recurrent Gegenbauer-Functional-Expansions Neural Network Control and Altered Artificial Bee Colony Optimization
,”
ASME J. Dyn. Sys. Meas. Control
,
139
(
5
), p.
051007
.10.1115/1.4035349
16.
Dai
,
Y.
,
Li
,
H.
,
Liu
,
B.
, and
Yang
,
C.
,
2022
, “
Calculation Boundary Vulnerability of Numerical Algorithm in Milling Stability Prediction
,”
Int. J. Adv. Manuf. Technol.
,
119
(
11–12
), pp.
8271
8286
.10.1007/s00170-021-08443-y
17.
Schmitz
,
T. L.
,
Bayly
,
P. V.
,
Soons
,
J. A.
, and
Dutterer
,
B.
,
2001
, “
Prediction of Surface Location Error by Time Finite Element Analysis and Euler Integration
,”
Proceedings of the 17th Annual ASPE Meeting
, St. Louis, MO, Oct. 20–25, pp.
132
137
.
You do not currently have access to this content.