Abstract

Fractional-order derivatives provide a powerful tool for the characterization of mechanical properties of viscoelastic materials. Fractional oscillators are mechanical models of viscoelastically damped structures, the viscoelastic damping of which is described by fractional-order constitutive equations. This paper proposes sliding mode control for a two-degree-of-freedom fractional Zener oscillator. Firstly, a virtual fractional oscillator is generated by means of a state transformation. Then, the total mechanical energy in the virtual oscillator is determined as the sum of the kinetic energy, the potential energy, and the fractional energy. Furthermore, sliding mode control for the fractional Zener oscillator is designed, in which the Lyapunov function is defined by the total mechanical energy. Finally, numerical simulations are conducted to validate the effectiveness of the proposed controllers.

References

1.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
2.
Mainardi
,
F.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity-An Introduction to Mathematical Models
,
Imperial College Press
,
London, UK
.
3.
Bagley
,
R. L.
,
1979
, “
Applications of Generalized Derivatives to Viscoelasticity
,” Ph.D. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH.
4.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
Fractional Calculus-a Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.10.2514/3.8142
5.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
6.
Xu
,
Z. D.
,
Xu
,
C.
, and
Hu
,
J.
,
2015
, “
Equivalent Fractional Kelvin Model and Experimental Study on Viscoelastic Damper
,”
J. Vib. Control
,
21
(
13
), pp.
2536
2552
.10.1177/1077546313513604
7.
Chen
,
Y. Q.
,
Petras
,
I.
, and
Xue
,
D. Y.
,
2009
, “
Fractional Order Control-a Tutorial
,”
American Control Conference,
St. Louis, MO, June 10–12, pp.
1397
1411
.
8.
Wei
,
Y. H.
,
Wang
,
J.
,
Liu
,
T.
, and
Wang
,
Y.
,
2019
, “
Sufficient and Necessary Conditions for Stabilizing Singular Fractional Order Systems With Partially Measurable State
,”
J. Franklin I.
,
356
(
4
), pp.
1975
1990
.10.1016/j.jfranklin.2019.01.022
9.
Chen
,
H.
, and
Chen
,
Y. Q.
,
2016
, “
Fractional-Order. Generalized Principle of Self-Support (FOGPSS) in Control System Design
,”
IEEE/CAA J. Autom.
,
3
(
4
), pp.
430
441
.10.1109/JAS.2016.7510094
10.
Oustaloup
,
A.
, and
Dubuisson
,
B.
,
2014
,
Diversity and Non-Integer Differentiation for System Dynamics
,
ISTE Ltd and Wiley
,
London, UK
.
11.
Chen
,
Y. Q.
,
Bhaskaran
,
T.
, and
Xue
,
D. Y.
,
2008
, “
Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers
,”
ASME J. Comput. Nonlinear Dynam.
,
3
(
2
), p.
021403
.10.1115/1.2833934
12.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dynam.
,
38
(
1–4
), pp.
323
337
.10.1007/s11071-004-3764-6
13.
Wei
,
Y. H.
,
Du
,
B.
,
Cheng
,
S.
, and
Wang
,
Y.
,
2017
, “
Fractional Order Systems Time-Optimal Control and Its Application
,”
J. Optimiz. Theory App.
,
174
(
1
), pp.
122
138
.10.1007/s10957-015-0851-4
14.
Utkin
,
V. I.
,
2013
,
Sliding Modes in Control and Optimization
,
Springer Science & Business Media
,
New York
.
15.
Chen
,
H.
,
Zhang
,
B. W.
,
Zhao
,
T. B.
,
Wang
,
T. T.
, and
Li
,
K.
,
2018
, “
Finite-Time Tracking Control for Extended Nonholonomic Chained-Form Systems With Parametric Uncertainty and External Disturbance
,”
J. Vib. Control
,
24
(
1
), pp.
100
109
.10.1177/1077546316633568
16.
Bandyopadhyay
,
B.
, and
Kamal
,
S.
,
2015
,
Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach
,
Springer
,
Switzerland
.
17.
Mathiyalagan
,
K.
, and
Sangeetha
,
G.
,
2020
, “
Second-Order Sliding Mode Control for Nonlinear Fractional-Order Systems
,”
Appl. Math. Comput.
,
383
, p.
125264
.10.1016/j.amc.2020.125264
18.
Djeghali
,
N.
,
Bettayeb
,
M.
, and
Djennoune
,
S.
,
2021
, “
Sliding Mode Active Disturbance Rejection Control for Uncertain Nonlinear Fractional-Order Systems
,”
Eur. J. Control
,
57
, pp.
54
67
.10.1016/j.ejcon.2020.03.008
19.
Wang
,
J.
,
Shao
,
C.
, and
Chen
,
Y. Q.
,
2018
, “
Fractional Order Sliding Mode Control Via Disturbance Observer for a Class of Fractional Order Systems With Mismatched Disturbance
,”
Mechatronics
,
53
, pp.
8
19
.10.1016/j.mechatronics.2018.05.006
20.
Chen
,
S.
,
Chiang
,
H.
,
Liu
,
T.
, and
Chang
,
C.
,
2019
, “
Precision Motion Control of Permanent Magnet Linear Synchronous Motors Using Adaptive Fuzzy Fractional-Order Sliding-Mode Control
,”
IEEE-ASME T. Mech.
,
24
(
2
), pp.
741
752
.10.1109/TMECH.2019.2892401
21.
Ren
,
H. P.
,
Wang
,
X.
,
Fan
,
J. T.
, and
Kaynak
,
O.
,
2019
, “
Fractional Order Sliding Mode Control of a Pneumatic Position Servo System
,”
J. Franklin I.
,
356
(
12
), pp.
6160
6174
.10.1016/j.jfranklin.2019.05.024
22.
Wang
,
H. P.
,
Mustafa
,
G. I. Y.
, and
Tian
,
Y.
,
2018
, “
Model-Free Fractional-Order Sliding Mode Control for an Active Vehicle Suspension System
,”
Adv. Eng. Softw.
,
115
, pp.
452
461
.10.1016/j.advengsoft.2017.11.001
23.
Tang
,
Y. G.
,
Zhang
,
X. Y.
,
Zhang
,
D. L.
,
Zhao
,
G.
, and
Guan
,
X. P.
,
2013
, “
Fractional Order Sliding Mode Controller Design for Antilock Braking Systems
,”
Neurocomputing
,
111
, pp.
122
130
.10.1016/j.neucom.2012.12.019
24.
Tuan
,
L. A.
,
2019
, “
Fractional-Order Fast Terminal Back-Stepping Sliding Mode Control of Crawler Cranes
,”
Mech. Mach. Theory
,
137
, pp.
297
314
.10.1016/j.mechmachtheory.2019.03.027
25.
Afghoul
,
H.
,
Krim
,
F.
,
Babes
,
B.
,
Beddar
,
A.
, and
Kihel
,
A.
,
2018
, “
Design and Real Time Implementation of Sliding Mode Supervised Fractional Controller for Wind Energy Conversion System Under Sever Working Conditions
,”
Energ. Convers. Manage.
,
167
, pp.
91
101
.10.1016/j.enconman.2018.04.097
26.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.10.1016/j.automatica.2009.04.003
27.
Dadras
,
S.
,
Dadras
,
S.
,
Malek
,
H.
, and
Chen
,
Y. Q.
,
2017
, “
A Note on the Lyapunov Stability of Fractional-Order Nonlinear Systems
,”
ASME
Paper No. DETC2017-68270.10.1115/DET C2017-68270
28.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2019
,
Analysis, Modeling and Stability of Fractional Order Differential Systems: The Infinite State Approach
,
Wiley
,
London, UK
.
29.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
30.
Zhang
,
Y. A.
,
Yuan
,
J.
,
Liu
,
J. M.
, and
Shi
,
B.
,
2017
, “
Lyapunov Functions and Sliding Mode Control for Two Degrees-of-Freedom and Multidegrees-of-Freedom Fractional Oscillators
,”
ASME J. Vib. Acous.
,
139
(
1
), p.
011014
.10.1115/1.4034843
31.
Yuan
,
J.
,
Zhang
,
Y. A.
,
Liu
,
J. M.
, and
Shi
,
B.
,
2017
, “
Sliding Mode Control of Vibration in Single-Degree-of-Freedom Fractional Oscillators
,”
ASME J. Dyn. Sys.
,
139
(
11
), p.
114503
.10.1115/1.4036665
32.
Niedziela
,
M.
, and
Wlazło
,
J.
,
2018
, “
Notes on Computational Aspects of the Fractional-Order Viscoelastic Model
,”
J. Eng. Math.
,
108
(
1
), pp.
91
105
.10.1007/s10665-017-9911-0
33.
Yuan
,
J.
,
Gao
,
S.
,
Xiu
,
G. Z.
, and
Wang
,
L. Y.
,
2020
, “
Mechanical Energy and Equivalent Viscous Damping for Fractional Zener Oscillator
,”
ASME J. Vib. Acous.
,
142
,(4) p.
041004
.10.1115/1.4046573
34.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional-Order Integrator and Derivatives
,”
Signal Image Video P.
,
6
(
3
), pp.
359
372
.10.1007/s11760-012-0332-2
35.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.10.1016/j.camwa.2012.03.099
36.
Nutting
,
P.
,
1921
, “
A New General Law of Deformation
,”
J. Franklin I.
,
191
(
5
), pp.
679
685
.10.1016/S0016-0032(21)90171-6
37.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained From Elasto-Viscous Bodies
,”
J. Appl. Phy.
,
7
(
8
), pp.
311
317
.10.1063/1.1745400
38.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2001
, “
Analysis of Rheological Equations Involving More Than One Fractional Parameters by the Use of the Simplest Mechanical Systems Based on These Equations
,”
Mech. Time-Depend. Mat.
,
5
(
2
), pp.
131
175
.10.1023/A:1011476323274
39.
Pritz
,
T.
,
2003
, “
Five-Parameter Fractional Derivative Model for Polymeric Damping Materials
,”
J. Vib. Control
,
265
(
5
), pp.
935
952
.10.1016/S0022-460X(02)01530-4
40.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
Lyapunov Stability of Linear Fractional Systems: Part 1-Definition of Fractional Energy
,”
ASME
Paper No. DETC2013-12824.10.1115/DETC2013-12824
41.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Control of Initialized Fractional-Order Systems
,” NASA Technical Report, Washington, DC, Report No. NASA/TM-2002-211377.
42.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2016
, “
Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach
,”
ASME J. Comput. Nonlin. Dyn.
,
11
(
4
), p.
041007
.10.1115/1.4031841
43.
Slotine
,
J. J. E.
, and
Li
,
W. P.
,
2004
,
Applied Nonlinear Control
,
Pearson Education Asia Limited and China Machine Press
,
Beijing, China
.
You do not currently have access to this content.