Abstract

This paper presents a hierarchical nonlinear control algorithm for the real-time planning and control of cooperative locomotion of legged robots that collaboratively carry objects. An innovative network of reduced-order models subject to holonomic constraints, referred to as interconnected linear inverted pendulum (LIP) dynamics, is presented to study cooperative locomotion. The higher level of the proposed algorithm employs a supervisory controller, based on event-based model predictive control (MPC), to effectively compute the optimal reduced-order trajectories for the interconnected LIP dynamics. The lower level of the proposed algorithm employs distributed nonlinear controllers to reduce the gap between reduced- and full-order complex models of cooperative locomotion. In particular, the distributed controllers are developed based on quadratic programing (QP) and virtual constraints to impose the full-order dynamical models of each agent to asymptotically track the reduced-order trajectories while having feasible contact forces at the leg ends. The paper numerically investigates the effectiveness of the proposed control algorithm via full-order simulations of a team of collaborative quadrupedal robots, each with a total of 22 degrees-of-freedom. The paper finally investigates the robustness of the proposed control algorithm against uncertainties in the payload mass and changes in the ground height profile. Numerical studies show that the cooperative agents can transport unknown payloads whose masses are up to 57%, 97%, and 137% of a single agent's mass with a team of two, three, and four legged robots.

References

1.
Tuci
,
E.
,
Alkilabi
,
M. H. M.
, and
Akanyeti
,
O.
,
2018
, “
Cooperative Object Transport in Multi-Robot Systems: A Review of the State-of-the-Art
,”
Front. Rob. AI
,
5
, p.
59
.10.3389/frobt.2018.00059
2.
Yan
,
Z.
,
Jouandeau
,
N.
, and
Cherif
,
A. A.
,
2013
, “
A Survey and Analysis of Multi-Robot Coordination
,”
Int. J. Adv. Rob. Syst.
,
10
(
12
), p.
399
.10.5772/57313
3.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
Taylor & Francis/CRC
, Boca Raton, FL.
4.
Sreenath
,
K.
, and
Kumar
,
V.
,
2013
,
Dynamics, Control and Planning for Cooperative Manipulation of Payloads Suspended by Cables From Multiple Quadrotor Robots
,
Science and Systems (RSS)
,
Robotics
, Berlin, Germany.
5.
Turpin
,
M.
,
Michael
,
N.
, and
Kumar
,
V.
,
2014
, “
Capt: Concurrent Assignment and Planning of Trajectories for Multiple Robots
,”
Int. J. Rob. Res.
,
33
(
1
), pp.
98
112
.10.1177/0278364913515307
6.
Panagou
,
D.
,
Turpin
,
M.
, and
Kumar
,
V.
,
2020
, “
Decentralized Goal Assignment and Safe Trajectory Generation in Multirobot Networks Via Multiple Lyapunov Functions
,”
IEEE Trans. Autom. Control
,
65
(
8
), pp.
3365
3380
.10.1109/TAC.2019.2946333
7.
Mesbahi
,
M.
, and
Egerstedt
,
M.
,
2010
,
Graph Theoretic Methods in Multiagent Networks
,
Princeton University Press
, Princeton, NJ.
8.
Bullo
,
F.
,
Cortés
,
J.
, and
Martinez
,
S.
,
2009
,
Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms
,
Princeton University Press
, Princeton, NJ.
9.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems of 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
.10.1016/j.automatica.2014.04.021
10.
Ames
,
A.
,
Galloway
,
K.
,
Sreenath
,
K.
, and
Grizzle
,
J.
,
2014
, “
Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
876
891
.10.1109/TAC.2014.2299335
11.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2013
, “
Embedding Active Force Control Within the Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
324
345
.10.1177/0278364912473344
12.
Veer
,
S.
,
Rakesh
., and
Poulakakis
,
I.
,
2019
, “
Input-to-State Stability of Periodic Orbits of Systems With Impulse Effects Via Poincaré Analysis
,”
IEEE Trans. Autom. Control
,
64
(
11
), pp.
4583
4598
.10.1109/TAC.2019.2909684
13.
Saglam
,
C.
, and
Byl
,
K.
,
2013
, “
Switching Policies for Metastable Walking
,”
IEEE Conference Decision Control
, Firenze, Italy, Dec. 10–13, pp.
977
983
. 10.1109/CDC.2013.6760009
14.
Johnson
,
A. M.
,
Burden
,
S. A.
, and
Koditschek
,
D. E.
,
2016
, “
A Hybrid Systems Model for Simple Manipulation and Self-Manipulation Systems
,”
Int. J. Rob. Res.
,
35
(
11
), pp.
1354
1392
.10.1177/0278364916639380
15.
Spong
,
M.
, and
Bullo
,
F.
,
2005
, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
,
50
(
7
), pp.
1025
1031
.10.1109/TAC.2005.851449
16.
Manchester
,
I.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Rob. Res.
,
30
(
3
), pp.
265
279
.10.1177/0278364910395339
17.
Smit-Anseeuw
,
N.
,
Gleason
,
R.
,
Vasudevan
,
R.
, and
Remy
,
C. D.
,
2017
, “
The Energetic Benefit of Robotic Gait Selection-A Case Study on the Robot RAMone
,”
IEEE Rob. Autom. Lett.
,
2
(
2
), pp.
1124
1131
.10.1109/LRA.2017.2661801
18.
Akbari Hamed
,
K.
, and
Gregg
,
R. D.
,
2017
, “
Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking
,”
IEEE Trans. Control Syst. Technol.
,
25
(
4
), pp.
1153
1167
.10.1109/TCST.2016.2597741
19.
Ames
,
A. D.
,
Gregg
,
R. D.
,
Wendel
,
E. D. B.
, and
Sastry
,
S.
,
2007
, “
On the Geometric Reduction of Controlled Three-Dimensional Bipedal Robotic Walkers
,”
Lagrangian and Hamiltonian Methods for Nonlinear Control 2006
,
Springer
Berlin Heidelberg
, Germany, pp.
183
196
.10.1007/978-3-540-73890-9_14
20.
Westervelt
,
E.
,
Grizzle
,
J.
, and
Koditschek
,
D.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
21.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
, 3rd ed.,
Springer
, London, UK.
22.
Chevallereau
,
C.
,
Grizzle
,
J.
, and
Shih
,
C.-L.
,
2009
, “
Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
37
50
.10.1109/TRO.2008.2010366
23.
Ramezani
,
A.
,
Hurst
,
J. W.
,
Akbari Hamed
,
K.
, and
Grizzle
,
J. W.
,
2014
, “
Performance Analysis and Feedback Control of ATRIAS, a Three-Dimensional Bipedal Robot
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021012
.10.1115/1.4025693
24.
Hereid
,
A.
,
Hubicki
,
C. M.
,
Cousineau
,
E. A.
, and
Ames
,
A. D.
,
2018
, “
Dynamic Humanoid Locomotion: A Scalable Formulation for HZD Gait Optimization
,”
IEEE Trans. Rob.
,
34
(
2
), pp.
370
387
.10.1109/TRO.2017.2783371
25.
Martin
,
A. E.
,
Post
,
D. C.
, and
Schmiedeler
,
J. P.
,
2014
, “
Design and Experimental Implementation of a Hybrid Zero Dynamics-Based Controller for Planar Bipeds With Curved Feet
,”
Int. J. Rob. Res.
,
33
(
7
), pp.
988
1005
.10.1177/0278364914522141
26.
Gregg
,
R. D.
,
Lenzi
,
T.
,
Hargrove
,
L. J.
, and
Sensinger
,
J. W.
,
2014
, “
Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees
,”
IEEE Trans. Rob.
,
30
(
6
), pp.
1455
1471
.10.1109/TRO.2014.2361937
27.
Zhao
,
H.
,
Horn
,
J.
,
Reher
,
J.
,
Paredes
,
V.
, and
Ames
,
A. D.
,
2017
, “
First Steps Toward Translating Robotic Walking to Prostheses: A Nonlinear Optimization Based Control Approach
,”
Auton. Robots
,
41
(
3
), pp.
725
742
.10.1007/s10514-016-9565-1
28.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
IEEE International Conference on Robotics and Automation
, Vol.
2
, Taipei, Taiwan, Sept. 14–19, pp.
1620
1626
.10.1109/ROBOT.2003.1241826
29.
Griffin
,
R. J.
,
Wiedebach
,
G.
,
Bertrand
,
S.
,
Leonessa
,
A.
, and
Pratt
,
J.
,
2017
, “
Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, BC/Canada, Sept. 24–28, pp.
667
673
.10.1109/IROS.2017.8202223
30.
Englsberger
,
J.
,
Ott
,
C.
,
Roa
,
M. A.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2011
, “
Bipedal Walking Control Based on Capture Point Dynamics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 14–19, pp.
4420
4427
.10.1109/IROS.2011.6094435
31.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
Sixth IEEE-RAS International Conference on Humanoid Robots
, Genova, Italy, Dec. 4–6, pp.
200
207
.10.1109/ICHR.2006.321385
32.
Winkler
,
A. W.
,
Farshidian
,
F.
,
Pardo
,
D.
,
Neunert
,
M.
, and
Buchli
,
J.
,
2017
, “
Fast Trajectory Optimization for Legged Robots Using Vertex-Based ZMP Constraints
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
2201
2208
.10.1109/LRA.2017.2723931
33.
Akbari Hamed
,
K.
,
Kim
,
J.
, and
Pandala
,
A.
,
2020
, “
Quadrupedal Locomotion Via Event-Based Predictive Control and QP-Based Virtual Constraints
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4463
4470
.10.1109/LRA.2020.3001471
34.
Fawcett
,
R. T.
,
Pandala
,
A.
,
Kim
,
J.
, and
Akbari Hamed
,
K.
,
2021
, “
Real-Time Planning and Nonlinear Control for Quadrupedal Locomotion With Articulated Tails
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
7
), p.
071004
.10.1115/1.4049555
35.
Di Carlo
,
J.
,
Wensing
,
P. M.
,
Katz
,
B.
,
Bledt
,
G.
, and
Kim
,
S.
,
2018
, “
Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Madrid, Spain, Oct. 1–5, pp.
1
9
.10.1109/IROS.2018.8594448
36.
Ding
,
Y.
,
Pandala
,
A.
, and
Park
,
H.
,
2019
, “
Real-Time Model Predictive Control for Versatile Dynamic Motions in Quadrupedal Robots
,” IEEE
International Conference on Robotics and Automation
, Montreal, QC/Canada, May 20–24, pp.
8484
8490
.10.1109/ICRA.2019.8793669
37.
Villarreal
,
O.
,
Barasuol
,
V.
,
Wensing
,
P. M.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2020
, “
MPC-Based Controller With Terrain Insight for Dynamic Legged Locomotion
,”
IEEE International Conference on Robotics and Automation
, Paris, France, May 31–Aug. 31, pp.
2436
2442
.10.1109/ICRA40945.2020.9197312
38.
Neunert
,
M.
,
Stäuble
,
M.
,
Giftthaler
,
M.
,
Bellicoso
,
C. D.
,
Carius
,
J.
,
Gehring
,
C.
,
Hutter
,
M.
, and
Buchli
,
J.
,
2018
, “
Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1458
1465
.10.1109/LRA.2018.2800124
39.
Bledt
,
G.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2017
, “
Policy-Regularized Model Predictive Control to Stabilize Diverse Quadrupedal Gaits for the MIT Cheetah
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vancouver, BC/Canada, Sept. 24–28, pp.
4102
4109
.10.1109/IROS.2017.8206268
40.
Fahmi
,
S.
,
Mastalli
,
C.
,
Focchi
,
M.
, and
Semini
,
C.
,
2019
, “
Passive Whole-Body Control for Quadruped Robots: Experimental Validation Over Challenging Terrain
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2553
2560
.10.1109/LRA.2019.2908502
41.
Kuindersma
,
S.
,
Permenter
,
F.
, and
Tedrake
,
R.
,
2014
, “
An Efficiently Solvable Quadratic Program for Stabilizing Dynamic Locomotion
,”
IEEE International Conference on Robotics and Automation
, Hong Kong, China, pp.
2589
2594
.https://agile.seas.harvard.edu/publications/efficiently-solvable-quadratic-program-stabilizingdynamic-locomotion
42.
Lehmann
,
D.
,
Henriksson
,
E.
, and
Johansson
,
K. H.
,
2013
, “
Event-Triggered Model Predictive Control of Discrete-Time Linear Systems Subject to Disturbances
,”
European Control Conference
, Zurich, Switzerland, July 17–19, pp.
1156
1161
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.838.8695&rep=rep1&type=pdf
43.
Akbari Hamed
,
K.
,
Kamidi
,
V. R.
,
Pandala
,
A.
,
Ma
,
W.
, and
Ames
,
A. D.
,
2020
, “
Distributed Feedback Controllers for Stable Cooperative Locomotion of Quadrupedal Robots: A Virtual Constraint Approach
,”
American Control Conference
, Denver, CO, July 1–3, pp.
5314
5321
.https://authors.library.caltech.edu/96716/2/09147673.pdf
44.
Prautzsch
,
H.
,
Boehm
,
W.
, and
Paluszny
,
M.
,
2002
,
Bézier and B-Spline Techniques
,
Springer-Verlag
, Berlin and Heidelberg, Germany.
45.
Khalil
,
H. K.
,
2001
,
Nonlinear Systems
, 3rd ed.,
Pearson
, Upper Saddle River, NJ.
46.
Hwangbo
,
J.
,
Lee
,
J.
, and
Hutter
,
M.
,
2018
, “
Per-Contact Iteration Method for Solving Contact Dynamics
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
895
902
.10.1109/LRA.2018.2792536
47.
Pandala
,
A. G.
,
Ding
,
Y.
, and
Park
,
H.
,
2019
, “
qpSWIFT: A Real-Time Sparse Quadratic Program Solver for Robotic Applications
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3355
3362
.10.1109/LRA.2019.2926664
48.
Fawcett
,
R. T.
,
2021
, “
Real-Time Planning and Nonlinear Control for Robust Quadrupedal Locomotion with Tails
,” M.S. thesis,
Virginia Tech
, Blacksburg, VA.
You do not currently have access to this content.