Abstract

This paper presents the closed-loop experimental framework and dynamic model validation for a 1/12-scale underwater kite design. The pool-based tow testing framework described herein, which involves a fully actuated, closed-loop controlled kite and flexible tether, significantly expands upon the capabilities of any previously developed open-source framework for experimental underwater kite characterization. Specifically, the framework has allowed for the validation of three closed-loop flight control strategies, along with a critical comparison between dynamic model predictions and experimental results. In this paper, we provide a detailed presentation of the experimental tow system and kite setup, describe the control algorithms implemented and tested, and quantify the level of agreement between our multi‐degree-of-freedom kite dynamic model and experimental data. We also present a sensitivity analysis that helps to identify the most influential parameters to kite performance and further explain the remaining mismatches between the model and data.

References

1.
Minesto
,
2019
, “Minesto Website,” accessed Apr. 7, 2022, https://minesto.com/
2.
Windlift
,
2019
, “Windlift Website,” accessed Apr. 7, 2022, https://windlift.com/
3.
Makani
,
2019
, “Makani Website,” accessed Apr. 7, 2022, https://x.company/projects/makani/
4.
Moodley
,
R.
,
Nthontho
,
M.
,
Chowdhury
,
S.
, and
Chowdhury
,
S.
,
2012
, “
A Technical and Economic Analysis of Energy Extraction From the Agulhas Current on the East Coast of South Africa
,”
IEEE Power and Energy Society General Meeting
,
IEEE
, San Diego, CA, July 22–26, pp.
1
8
.10.1109/PESGM.2012.6344793
5.
Duerr
,
A. E.
, and
Dhanak
,
M. R.
,
2012
, “
An Assessment of the Hydrokinetic Energy Resource of the Florida Current
,”
IEEE J. Ocean. Eng.
,
37
(
2
), pp.
281
293
.10.1109/JOE.2012.2186347
6.
Loyd
,
M.
,
1980
, “
Crosswind Kite Power
,”
J. Energy
,
4
(
3
), pp.
106
111
.10.2514/3.48021
7.
Siddiqui
,
A.
,
Naik
,
K.
,
Cobb
,
M.
,
Granlund
,
K.
, and
Vermillion
,
C.
,
2020
, “
Lab-Scale, Closed-Loop Experimental Characterization, Model Refinement, and Validation of a Hydrokinetic Energy-Harvesting Ocean Kite
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
11
), p.
111005
.10.1115/1.4047825
8.
Deese
,
J. T.
,
Muyimbwa
,
T.
,
Deodhar
,
N. A.
,
Vermillion
,
C. R.
, and
Tkacik
,
P.
,
2015
, “
Lab-Scale Characterization of a Lighter-Than-Air Wind Energy System-Closing the Loop
,”
AIAA
Paper No. 2015-3350.10.2514/6.2015-3350
9.
Cobb
,
M.
,
Deodhar
,
N.
, and
Vermillion
,
C.
,
2018
, “
Lab-Scale Experimental Characterization and Dynamic Scaling Assessment for Closed-Loop Crosswind Flight of Airborne Wind Energy Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
7
), p.
071005
.10.1115/1.4038650
10.
Vermillion
,
C.
,
Grunnagle
,
T.
,
Lim
,
R.
, and
Kolmanovsky
,
I.
,
2014
, “
Model-Based Plant Design and Hierarchical Control of a Prototype Lighter-Than-Air Wind Energy System, With Experimental Flight Test Results
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
531
542
.10.1109/TCST.2013.2263505
11.
Li
,
H.
,
Olinger
,
D. J.
, and
Demetriou
,
M. A.
,
2019
, “
Modeling and Control of Tethered Undersea Kites
,”
Ocean Eng.
,
190
, p.
106390
.10.1016/j.oceaneng.2019.106390
12.
Ghasemi
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2016
, “
A Nonlinear Computational Model of Tethered Underwater Kites for Power Generation
,”
ASME J. Fluids Eng.
,
138
(
12
), p. 121401.10.1115/1.4034195
13.
Makhani Project Github Repository
,” accessed June 10, 2020, http://github.com/google/makani
14.
Fredette
,
R.
,
2015
, “
Scale-Model Testing of Tethered Undersea Kites for Power Generation
,” Master's thesis,
Worcester Polytechnic Institute
, Worcester.
15.
Gui
,
P.
,
Tang
,
L.
, and
Mukhopadhyay
,
S.
,
2015
, “
Mems Based Imu for Tilting Measurement: Comparison of Complementary and Kalman Filter Based Data Fusion
,”
IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)
,
IEEE
, Auckland, New Zealand, June 15–17, pp.
2004
2009
.10.1109/ICIEA.2015.7334442
16.
Stengel
,
R. F.
,
2015
,
Flight Dynamics
,
Princeton University Press
, Princeton, NJ.
17.
Seedgoat, 2019, “
Realtime Simulation and Testing
,” Seedgoat, accessed July 10, 2019, http://speedgoat.com
18.
Granlund
,
K.
,
Monnier
,
B.
,
Ol
,
M.
, and
Williams
,
D.
,
2014
, “
Airfoil Longitudinal Gust Response in Separated vs. attached Flows
,”
Phys. Fluids
,
26
(
2
), p.
027103
.10.1063/1.4864338
19.
Reed
,
J.
,
Cobb
,
M.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Muglia
,
M.
, and
Vermillion
,
C.
,
2020
, “
Hierarchical Control Design and Performance Assessment of an Ocean Kite in a Turbulent Flow Environment
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
12726
12732
.
20.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
, Chichester, West Sussex, UK.
21.
Reed
,
J.
,
Cobb
,
M.
,
Daniels
,
J.
,
Siddiqui
,
A.
,
Muglia
,
M.
, and
Vermillion
,
C.
,
2020
, “
Hierarchical Control Design and Performance Assessment of an Ocean Kite in a Turbulent Flow Environment
,”
IFAC World Congress
, Berlin, Germany, July 11–17.10.1016/j.ifacol.2020.12.1887
22.
Drela
,
M.
, and
Youngren
,
H.
,
1989
, “
XFOIL
,” accessed Apr. 7, 2022, https://web.mit.edu/drela/Public/web/xfoil/
23.
Drela
,
M.
, and
Youngren
,
H.
,
2017
, “
AVL
,” accessed Apr. 7, 2022, https://web.mit.edu/drela/Public/web/avl/
24.
Rapp
,
S.
,
Schmehl
,
R.
,
Oland
,
E.
, and
Haas
,
T.
,
2019
, “
Cascaded Pumping Cycle Control for Rigid Wing Airborne Wind Energy Systems
,”
J. Guid. Control Dyn.
,
42
(
11
), pp.
2456
2473
.10.2514/1.G004246
25.
Fagiano
,
L.
,
Zgraggen
,
A. U.
,
Morari
,
M.
, and
Khammash
,
M.
,
2014
, “
Automatic Crosswind Flight of Tethered Wings for Airborne Wind Energy: Modeling, Control Design, and Experimental Results
,”
IEEE Trans. Control Syst. Technol.
,
22
(
4
), pp.
1433
1447
.10.1109/TCST.2013.2279592
26.
MathWorks,
2020
, “
Simulation and Model-Based Design
,” accessed Apr. 7, 2022, https://www.mathworks.com/products/simulink.html
27.
Miranda-Colorado
,
R.
,
Aguilar
,
L. T.
, and
Herrero-Brito
,
J. E.
,
2018
, “
Reduction of Power Consumption on Quadrotor Vehicles Via Trajectory Design and a Controller-Gains Tuning Stage
,”
Aerosp. Sci. Technol.
,
78
, pp.
280
296
.10.1016/j.ast.2018.04.027
You do not currently have access to this content.