Abstract

Most modern vehicles feature some level of automation that contributes to the overall feeling of comfort and safety. Traditional designs are, however, more difficult to apply. In fact, it is a growing consumer of wires for power and communication use, which increases the weight and cost. As a result, new micro-electronics development aims to create systems that do not require external power sources. The automotive systems are exposed to disturbances, which exhibit a vibrational response. This may be harvested into electrical energy. Therefore, the generated energy may be a potential power source for devices, applied to the vehicle. To this end, a micropower generator based on a piezo-electric device is attached to the front suspension arm, an unusual solution in the automotive industry, for extracting energy from vehicle dynamics to power micro-electronic devices and sensors. A numerical simulation from a three degrees-of-freedom model and an experimental vehicular test in different road types were applied to map the energy generated in the harvesting process. The results show that the possibility of generating micro-energy on good quality roads; is low when the International Roughness Index (IRI) is less than 4, and the micro-energy is less than 0.1 mW. However, significant performance is achieved on uneven roads (IRI > 10), that achieve harvested power greater than 0.2 mW. The IRI is a standard method for classifying road roughness. It was found generally that an off-road vehicle is better for harvesting micro-energy because of the high acceleration in the suspension.

References

1.
Hu
,
Y.
,
Wang
,
X.
,
Qin
,
Y.
,
Li
,
Z.
,
Wang
,
C.
, and
Wu
,
H.
,
2022
, “
A Robust Hybrid Generator for Harvesting Vehicle Suspension Vibration Energy From Random Road Excitation
,”
Appl. Energy
,
309
, pp.
1
8
.10.1016/j.apenergy.2021.118506
2.
Thompson
,
M.
,
1996
, “
The Thick and Thin of Car Cabling
,”
IEEE Spectrum
,
33
(
2
), pp.
42
45
.10.1109/6.482273
3.
Aguirre
,
E.
, and
Raucent
,
B.
,
1994
, “
Economic Comparison of Wire Harness Assembly Systems
,”
J. Manuf. Syst.
,
13
(
4
), pp.
276
288
.10.1016/0278-6125(94)90035-3
4.
Viéa
,
M.-S.
,
Zufferey
,
N.
, and
Cordeau
,
J.-F.
,
2019
, “
Solving the Wire-Harness Design Problem at a European Car Manufacturer
,”
Eur. J. Oper. Res.
,
272
, pp.
712
724
.10.1016/j.ejor.2018.06.047
5.
Villanueva-Rey
,
P.
,
Belo
,
S.
,
Quinteiro
,
P.
,
Arroja
,
L.
, and
Dias
,
A. C.
,
2018
, “
Wiring in the Automobile Industry: Life Cycle Assessment of an Innovative Cable Solution
,”
J. Cleaner Prod.
,
204
, pp.
237
246
.10.1016/j.jclepro.2018.09.017
6.
Lin
,
J.-R.
,
Talty
,
T.
, and
Tonguz
,
O. K.
,
2015
, “
A Blind Zone Alert System Based on Intra-Vehicular Wireless Sensor Networks
,”
IEEE Trans. Ind. Inf.
,
11
(
2
), pp. 476–484.10.1109/TII.2015.2404800
7.
Mitcheson
,
P. D.
,
Yeatman
,
E. M.
,
Rao
,
G. K.
,
Holmes
,
A. S.
, and
Green
,
T. C.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.10.1109/JPROC.2008.927494
8.
Abdelkareem
,
M. A. A.
,
Xu
,
L.
,
Ali
,
M. K. A.
,
El-Daly
,
A.-R.
,
Hassan
,
M. A.
,
Elagouz
,
A.
, and
Bo
,
Y.
,
2019
, “
Analysis of the Prospective Vibrational Energy Harvesting of Heavy-Duty Truck Suspensions: A Simulation Approach
,”
Energy
,
173
, pp.
332
351
.10.1016/j.energy.2019.02.060
9.
Bakker
,
A.
, and
Huijsing
,
J. H.
,
1996
, “
Micropower CMOS Temperature Sensor With Digital Output
,”
IEEE J. Solid-State Circuits
,
31
(
7
), pp.
933
937
.10.1109/4.508205
10.
Souri
,
K.
, and
Makinwa
,
K. A. A.
,
2011
, “
A 0.12 mm2 7.4 μW Micropower Temperature Sensor With an Inaccuracy of ±0.2 °C (3σ) From −30 °C to 125 °C
,”
IEEE J. Solid-State Circuits
,
46
(
7
), pp.
1693
1700
.10.1109/JSSC.2011.2144290
11.
Paavola
,
M.
,
Kämäräinen
,
M.
,
Jere
,
A. M.
,
Saukoski
,
J. M.
,
Laiho
,
M.
, and
Halonen
,
K. A. I.
,
2007
,
IEEE J. Solid-State Circuits
,
42
(
12
), pp.
2651
2665
.10.1109/JSSC.2007.908764
12.
Smith
,
M. J. S.
,
Bowman
,
L.
, and
Meindl
,
J. D.
,
1986
, “
Analysis, Design, and Performance of Micropower Circuits for a Capacitive Pressure Sensor IC
,”
IEEE J. Solid-State Circuits
,
21
(
6
), pp.
1045
1056
.10.1109/JSSC.1986.1052647
13.
Cho
,
K.-B.
,
Krymski
,
A. I.
, and
Fossum
,
E. R.
,
2003
, “
A 1.5-V 550-μW 176x144 Autonomous CMOS Active Pixel Image Sensor
,”
IEEE Trans. Electron Devices
,
50
(
1
), pp.
96
105
.10.1109/TED.2002.806475
14.
Bucci
,
G.
,
Fiorucci
,
E.
,
Ciancetta
,
F.
, and
Luiso
,
M.
,
2014
, “
Measuring System for Micro Electric Power
,”
IEEE Trans. Instrum. Meas.
,
63
(
2
), pp.
410
421
.10.1109/TIM.2013.2280475
15.
Li
,
Y.
,
Yu
,
H.
,
Su
,
B.
, and
Shang
,
Y.
,
2008
, “
Hybrid Micropower Source for Wireless Sensor Network
,”
IEEE Sens. J.
,
8
(
6
), pp.
678
681
.10.1109/JSEN.2008.922692
16.
Vullers
,
R. J. M.
,
van Schaijk
,
R.
,
Doms
,
I.
,
Van Hoof
,
C.
, and
Mertens
,
R.
,
2009
, “
Micropower Energy Harvesting
,”
Solid-State Electron.
,
53
, pp.
684
693
.10.1016/j.sse.2008.12.011
17.
Ghazanfarian
,
J.
,
Mohammadi
,
M. M.
, and
Uchino
,
K.
,
2021
, “
Piezoelectric Energy Harvesting: A Systematic Review of Reviews
,”
Actuators
,
10
(
312
), pp.
1
40
.10.3390/act10120312
18.
Li
,
Y.
,
2014
, “
Simple Techniques for Piezoelectric Energy Harvesting Optimization
,”
Ph.D. thesis
,
INSA de Lyon
,
Lyon
.https://theses.hal.science/tel-01135309/document
19.
Mello
,
M. H. B.
, and
Idehara
,
S. J.
,
2018
, “
Measurement and Analysis of Vehicle Comfort and Road Quality
,”
Int. J. Res. Eng. Technol.
,
7
(
9
), pp.
72
79
.10.15623/ijret.2018.0709011
20.
Ulsoy
,
A. G.
,
Peng
,
H.
, and
Çakmakci
,
M.
,
2012
,
Automotive Control Systems
,
Cambrige University Press
,
Cambridge, UK
.
21.
Mucka
,
P.
,
2016
, “
Current Approaches to Quantify the Longitudinal Road Roughness
,”
Int. J. Pavement Eng.
,
17
(
8
), pp.
659
679
.10.1080/10298436.2015.1011782
22.
Genta
,
G.
, and
Morello
,
L.
,
2009
,
The Automotive Chassis, Volume 2: System Design
,
Springer
,
Dordrecht, The Netherlands
.
23.
Chen
,
S.-L.
,
Lin
,
C.-H.
,
Tang
,
C.-W.
,
Chu
,
L.-P.
, and
Cheng
,
C.-K.
,
2020
, “
Research on the International Roughness Index Threshold of Road Rehabilitation in Metropolitan Areas: A Case Study in Taipei City
,”
Sustainability
,
12
, pp.
1
19
.10.3390/su122410536
You do not currently have access to this content.