Abstract

This paper presents a virtual patient generator (VPG) intended to be used for preclinical in silico evaluation of autonomous vasopressor administration algorithms in the setting of experimentally induced vasoplegia. Our VPG consists of two main components: (i) a mathematical model that replicates physiological responses to experimental vasoplegia (induced by sodium nitroprusside (SNP)) and vasopressor resuscitation via phenylephrine (PHP) and (ii) a parameter vector sample generator in the form of a multidimensional probability density function (PDF) using which the parameters characterizing the mathematical model can be sampled. We developed and validated a mathematical model capable of predicting physiological responses to the administration of SNP and PHP. Then, we developed a parameter vector sample generator using a collective variational inference method. In a blind testing, the VPG developed by combining the two could generate a large number of realistic virtual patients (VPs), which could simulate physiological responses observed in all the experiments: on the average, 98.1% and 74.3% of the randomly generated VPs were physiologically legitimate and adequately replicated the test subjects, respectively, and 92.4% of the experimentally observed responses could be covered by the envelope formed by the subject-replicating VPs. In sum, the VPG developed in this paper may be useful for preclinical in silico evaluation of autonomous vasopressor administration algorithms.

References

1.
Russell
,
J. A.
,
2019
, “
Vasopressor Therapy in Critically Ill Patients With Shock
,”
Intensive Care Med.
,
45
(
11
), pp.
1503
1517
.10.1007/s00134-019-05801-z
2.
Scheeren
,
T. W. L.
,
Bakker
,
J.
,
De Backer
,
D.
,
Annane
,
D.
,
Asfar
,
P.
,
Boerma
,
E. C.
,
Cecconi
,
M.
, et al.,
2019
, “
Current Use of Vasopressors in Septic Shock
,”
Ann. Intensive Care
,
9
(
1
), p.
20
.10.1186/s13613-019-0498-7
3.
Nazari
,
A.
,
Sadr
,
S. S.
,
Faghihi
,
M.
,
Azizi
,
Y.
,
Hosseini
,
M. J.
,
Mobarra
,
N.
,
Tavakoli
,
A.
, and
Imani
,
A.
,
2015
, “
Vasopressin Attenuates Ischemia– Reperfusion Injury Via Reduction of Oxidative Stress and Inhibition of Mitochondrial Permeability Transition Pore Opening in Rat Hearts
,”
Eur. J. Pharmacol.
,
760
, pp.
96
102
.10.1016/j.ejphar.2015.04.006
4.
Manolopoulos
,
P. P.
,
Boutsikos
,
I.
,
Boutsikos
,
P.
,
Iacovidou
,
N.
, and
Ekmektzoglou
,
K.
,
2020
, “
Current Use and Advances in Vasopressors and Inotropes Support in Shock
,”
J. Emerg. Crit. Care Med.
,
4
, p.
20
.10.21037/jeccm.2019.12.03
5.
Adibfar
,
A.
,
Camacho
,
F.
,
Rogers
,
A. D.
, and
Cartotto
,
R.
,
2021
, “
The Use of Vasopressors During Acute Burn Resuscitation
,”
Burns
,
47
(
1
), pp.
58
66
.10.1016/j.burns.2020.09.005
6.
Ortoleva
,
J.
,
Shapeton
,
A.
,
Vanneman
,
M.
, and
Dalia
,
A. A.
,
2020
, “
Vasoplegia During Cardiopulmonary Bypass: Current Literature and Rescue Therapy Options
,”
J. Cardiothorac. Vasc. Anesth.
,
34
(
10
), pp.
2766
2775
.10.1053/j.jvca.2019.12.013
7.
Edwards
,
A. M.
,
Johnson
,
E. G.
, and
Bernard
,
A. C.
,
2020
, “
Intraoperative Vasopressor Use During Emergency Surgery on Injured Meth Users
,”
Trauma Surg. Acute Care Open
,
5
(
1
), p.
e000553
.10.1136/tsaco-2020-000553
8.
Russell
,
J. A.
,
Gordon
,
A. C.
,
Williams
,
M. D.
,
Boyd
,
J. H.
,
Walley
,
K. R.
, and
Kissoon
,
N.
,
2021
, “
Vasopressor Therapy in the Intensive Care Unit
,”
Semin. Respir. Crit. Care Med.
,
42
(
1
), pp.
059
077
.10.1055/s-0040-1710320
9.
Levy
,
B.
,
Fritz
,
C.
,
Tahon
,
E.
,
Jacquot
,
A.
,
Auchet
,
T.
, and
Kimmoun
,
A.
,
2018
, “
Vasoplegia Treatments: The Past, the Present, and the Future
,”
Crit. Care
,
22
(
1
) Article number. 52.10.1186/s13054-018-1967-3
10.
Shaefi
,
S.
,
Mittel
,
A.
,
Klick
,
J.
,
Evans
,
A.
,
Ivascu
,
N. S.
,
Gutsche
,
J.
, and
Augoustides
,
J. G. T.
,
2018
, “
Vasoplegia After Cardiovascular Procedures—Pathophysiology and Targeted Therapy
,”
J. Cardiothorac. Vasc. Anesth.
,
32
(
2
), pp.
1013
1022
.10.1053/j.jvca.2017.10.032
11.
Klijian
,
A.
,
Khanna
,
A. K.
,
Reddy
,
V. S.
,
Friedman
,
B.
,
Ortoleva
,
J.
,
Evans
,
A. S.
,
Panwar
,
R.
,
Kroll
,
S.
,
Greenfeld
,
C. R.
, and
Chatterjee
,
S.
,
2021
, “
Treatment With Angiotensin II Is Associated With Rapid Blood Pressure Response and Vasopressor Sparing in Patients With Vasoplegia After Cardiac Surgery: A Post-Hoc Analysis of Angiotensin II for the Treatment of High-Output Shock (ATHOS-3) Study
,”
J. Cardiothorac. Vasc. Anesth.
,
35
(
1
), pp.
51
58
.10.1053/j.jvca.2020.08.001
12.
Potts
,
M. J.
, and
Phelan
,
K. W.
,
1996
, “
Deficiencies in Calculation and Applied Mathematics Skills in Pediatrics Among Primary Care Interns
,”
Arch. Pediatr. Adolesc. Med.
,
150
(
7
), pp.
748
752
.10.1001/archpedi.1996.02170320094016
13.
Wood
,
J. P.
,
Traub
,
S. J.
, and
Lipinski
,
C.
,
2013
, “
Safety of Epinephrine for Anaphylaxis in the Emergency Setting
,”
World J. Emerg. Med.
,
4
(
4
), p.
245
.10.5847/wjem.j.issn.1920-8642.2013.04.001
14.
Rolfe
,
S.
, and
Harper
,
N.
,
1995
, “
Ability of Hospital Doctors to Calculate Drug Doses
,”
BMJ
,
310
(
6988
), pp.
1173
1174
.10.1136/bmj.310.6988.1173
15.
Kanwar
,
M.
,
Irvin
,
C. B.
,
Frank
,
J. J.
,
Weber
,
K.
, and
Rosman
,
H.
,
2010
, “
Confusion About Epinephrine Dosing Leading to Iatrogenic Overdose: A Life-Threatening Problem With a Potential Solution
,”
Ann. Emerg. Med.
,
55
(
4
), pp.
341
344
.10.1016/j.annemergmed.2009.11.008
16.
Yapps
,
B.
,
Shin
,
S.
,
Bighamian
,
R.
,
Thorsen
,
J.
,
Arsenault
,
C.
,
Quraishi
,
S. A.
,
Hahn
,
J.-O.
, and
Reisner
,
A. T.
,
2017
, “
Hypotension in ICU Patients Receiving Vasopressor Therapy
,”
Sci. Rep.
,
7
(
1
), p.
8551
.10.1038/s41598-017-08137-0
17.
Rinehart
,
J.
,
Lee
,
S.
,
Saugel
,
B.
, and
Joosten
,
A.
,
2021
, “
Automated Blood Pressure Control
,”
Semin. Respir. Crit. Care Med.
,
42
(
1
), pp.
047
058
.10.1055/s-0040-1713083
18.
Rinehart
,
J.
,
Ma
,
M.
,
Calderon
,
M. D.
, and
Cannesson
,
M.
,
2018
, “
Feasibility of Automated Titration of Vasopressor Infusions Using a Novel Closed-Loop Controller
,”
J. Clin. Monit. Comput.
,
32
(
1
), pp.
5
11
.10.1007/s10877-017-9981-6
19.
Joosten
,
A.
,
Alexander
,
B.
,
Duranteau
,
J.
,
Taccone
,
F. S.
,
Creteur
,
J.
,
Vincent
,
J. L.
,
Cannesson
,
M.
, and
Rinehart
,
J.
,
2019
, “
Feasibility of Closed-Loop Titration of Norepinephrine Infusion in Patients Undergoing Moderate- and High-Risk Surgery
,”
Br. J. Anaesth.
,
123
(
4
), pp.
430
438
.10.1016/j.bja.2019.04.064
20.
Wassar
,
T.
,
Luspay
,
T.
,
Upendar
,
K. R.
,
Moisi
,
M.
,
Voigt
,
R. B.
,
Marques
,
N. R.
,
Khan
,
M. N.
,
Grigoriadis
,
K. M.
,
Franchek
,
M. A.
, and
Kramer
,
G. C.
,
2014
, “
Automatic Control of Arterial Pressure for Hypotensive Patients Using Phenylephrine
,”
Int. J. Modell. Simul.
,
34
(
4
), pp.
187
198
.10.2316/Journal.205.2014.4.205-6087
21.
Bighamian
,
R.
,
Reisner
,
A. T.
, and
Hahn
,
J. O.
,
2014
, “
An Analytic Tool for Prediction of Hemodynamic Responses to Vasopressors
,”
IEEE Trans. Biomed. Eng.
,
61
(
1
), pp.
109
118
.10.1109/TBME.2013.2277867
22.
Rinehart
,
J.
,
Ma
,
M.
,
Calderon
,
M. D.
,
Bardaji
,
A.
,
Hafiane
,
R.
,
Van der Linden
,
P.
, and
Joosten
,
A.
,
2019
, “
Blood Pressure Variability in Surgical and Intensive Care Patients: Is There a Potential for Closed-Loop Vasopressor Administration?
,”
Anaesth. Crit. Care Pain Med.
,
38
(
1
), pp.
69
71
.10.1016/j.accpm.2018.11.009
23.
Tasoujian
,
S.
,
Salavati
,
S.
,
Franchek
,
M.
, and
Grigoriadis
,
K.
,
2019
, “
Robust IMC-PID and Parameter-Varying Control Strategies for Automated Blood Pressure Regulation
,”
Int. J. Control Autom. Syst.
,
17
(
7
), pp.
1803
1813
.10.1007/s12555-018-0631-7
24.
Joosten
,
A.
,
Delaporte
,
A.
,
Alexander
,
B.
,
Su
,
F.
,
Creteur
,
J.
,
Vincent
,
J.-L.
,
Cannesson
,
M.
, and
Rinehart
,
J.
,
2019
, “
Automated Titration of Vasopressor Infusion Using a Closed-Loop Controller
,”
Anesthesiology
,
130
(
3
), pp.
394
403
.10.1097/ALN.0000000000002581
25.
Kumar
,
S.
,
Puri
,
G. D.
,
Mathew
,
P. J.
, and
Mandal
,
B.
,
2022
, “
Evaluation of Indigenously Developed Closed-Loop Automated Blood Pressure Control System (Claps): A Preliminary Study
,”
J. Clin. Monit. Comput.
,
36
(
6
), pp.
1657
1665
.10.1007/s10877-022-00810-8
26.
Parvinian
,
B.
,
Pathmanathan
,
P.
,
Daluwatte
,
C.
,
Yaghouby
,
F.
,
Gray
,
R. A.
,
Weininger
,
S.
,
Morrison
,
T. M.
, and
Scully
,
C. G.
,
2019
, “
Credibility Evidence for Computational Patient Models Used in the Development of Physiological Closed-Loop Controlled Devices for Critical Care Medicine
,”
Front. Physiol.
,
10
, p.
220
.10.3389/fphys.2019.00220
27.
Marques
,
N. R.
,
Whitehead
,
W. E.
,
Kallu
,
U. R.
,
Kinsky
,
M. P.
,
Funston
,
J. S.
,
Wassar
,
T.
,
Khan
,
M. N.
, et al.,
2017
, “
Physician-Directed Versus Computerized Closed-Loop Control of Blood Pressure Using Phenylephrine in a Swine Model
,”
Anesth. Analg.
,
125
(
1
), pp.
110
116
.10.1213/ANE.0000000000001961
28.
Kao
,
Y. M.
,
Sampson
,
C. M.
,
Shah
,
S. A.
,
Salsbury
,
J. R.
,
Tivay
,
A.
,
Bighamian
,
R.
,
Scully
,
C. G.
,
Kinsky
,
M.
,
Kramer
,
G. C.
, and
Hahn
,
J. O.
,
2023
, “
A Mathematical Model for Simulation of Vasoplegic Shock and Vasopressor Therapy
,”
IEEE Trans. Biomed. Eng.
,
70
(
5
), pp.
1565
1574
.10.1109/TBME.2022.3222745
29.
Zhu
,
J.
,
Jin
,
X.
,
Bighamian
,
R.
,
Kim
,
C.
,
Shipley
,
S. T.
, and
Hahn
,
J.
,
2019
, “
Semi-Adaptive Infusion Control of Medications With Excitatory Dose-Dependent Effects
,”
IEEE Trans. Control Syst. Technol.
,
27
(
4
), pp.
1735
1743
.10.1109/TCST.2018.2815551
30.
Pang
,
C. C. Y.
,
2001
, “
Autonomic Control of the Venous System in Health and Disease: Effects of Drugs
,”
Pharmacol. Ther.
,
90
(
2–3
), pp.
179
230
.10.1016/S0163-7258(01)00138-3
31.
Gelman
,
S.
,
Warner
,
D. S.
, and
Warner
,
M. A.
,
2008
, “
Venous Function and Central Venous Pressure
,”
Anesthesiology
,
108
(
4
), pp.
735
748
.10.1097/ALN.0b013e3181672607
32.
Tivay
,
A.
,
Kramer
,
G. C.
, and
Hahn
,
J.-O.
,
2022
, “
Collective Variational Inference for Personalized and Generative Physiological Modeling: A Case Study on Hemorrhage Resuscitation
,”
IEEE Trans. Biomed. Eng.
,
69
(
2
), pp.
666
677
.10.1109/TBME.2021.3103141
33.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.10.1080/01621459.2017.1285773
34.
Kingma
,
D. P.
, and
Welling
,
M.
,
2019
, “
An Introduction to Variational Autoencoders
,”
Found. Trends Mach. Learn.
,
12
(
4
), pp.
307
392
.10.1561/2200000056
35.
Ranganath
,
R.
,
Gerrish
,
S.
, and
Blei
,
D. M.
,
2014
, “
Black Box Variational Inference
,”
Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics
, Reykjavik, Iceland, Apr. 22–25, pp.
814
822
.https://proceedings.mlr.press/v33/ranganath14.html
36.
Hoffman
,
M. D.
,
Blei
,
D. M.
,
Wang
,
C.
, and
Paisley
,
J.
,
2013
, “
Stochastic Variational Inference
,”
J. Mach. Learn. Res.
,
14
, pp.
1303
1347
.https://jmlr.org/papers/volume14/hoffman13a/hoffman13a.pdf
37.
Kanal
,
V.
,
Pathmanathan
,
P.
,
Hahn
,
J. O.
,
Kramer
,
G.
,
Scully
,
C.
, and
Bighamian
,
R.
,
2022
, “
Development and Validation of a Mathematical Model of Heart Rate Response to Fluid Perturbation
,”
Sci. Rep.
,
12
(
1
), p.
21463
.10.1038/s41598-022-25891-y
38.
Chalumuri
,
Y. R.
,
Arabidarrehdor
,
G.
,
Tivay
,
A.
,
Sampson
,
C. M.
,
Khan
,
M.
,
Kinsky
,
M.
,
Kramer
,
G. C.
,
Hahn
,
J. O.
,
Scully
,
C. G.
, and
Bighamian
,
R.
,
2024
, “
A Lumped-Parameter Model of the Cardiovascular System Response for Evaluating Automated Fluid Resuscitation Systems
,”
IEEE Access
,
12
, pp.
62511
62525
.10.1109/ACCESS.2024.3395008
39.
Bighamian
,
R.
,
Hahn
,
J. O.
,
Kramer
,
G.
, and
Scully
,
C.
,
2021
, “
Accuracy Assessment Methods for Physiological Model Selection Toward Evaluation of Closed-Loop Controlled Medical Devices
,”
PLoS One
,
16
(
4
), p.
e0251001
.10.1371/journal.pone.0251001
40.
Tivay
,
A.
,
Jin
,
X.
,
Lo
,
A. K. Y.
,
Scully
,
C. G.
, and
Hahn
,
J. O.
,
2020
, “
Practical Use of Regularization in Individualizing a Mathematical Model of Cardiovascular Hemodynamics Using Scarce Data
,”
Front. Physiol.
,
11
, p.
452
.10.3389/fphys.2020.00452
41.
Tivay
,
A.
,
Kramer
,
G. C.
, and
Hahn
,
J.-O.
,
2021
, “
Inference-Based Subject Atypicality and Signal Quality Indicators for Physiological Data
,”
Proceedings of the Workshop on Medical Cyber Physical Systems and Internet of Medical Things
,
ACM
,
New York
, May 18, pp.
7
11
.
42.
Yin
,
W.
,
Tivay
,
A.
,
Kramer
,
G. C.
,
Bighamian
,
R.
, and
Hahn
,
J. O.
,
2022
, “
Conflicting Interactions in Multiple Closed-Loop Controlled Critical Care Treatments: A Hemorrhage Resuscitation-Intravenous Propofol Sedation Case Study
,”
Biomed. Signal Process. Control
,
71
, p.
103268
.10.1016/j.bspc.2021.103268
You do not currently have access to this content.