Most single-phase inverters, being sourced by fuel cell stacks (FCSs), subject the stacks to reflected low-frequency (120 Hz) current ripples that ride on average dc currents. The ripple current impacts the sizing and efficiency of the FCS. As such and typically, a passive or active filter is required at the input of the inverter (or output of the FCS) to mitigate the ripple current. Toward that end, this paper outlines a guideline to choose the optimum size of a passive input-filter capacitor for a fuel-cell-based power system from the standpoints of the overall system energy density and cost. Detailed case-specific simulation results, based on an analytical approach, are provided to illustrate key issues for both unity power factor as well as harmonic loads.

References

1.
Mazumder
,
S. K.
,
Sarkar
,
T.
, and
Acharya
,
K.
,
2009
, “
A DirectFETtm Based High-Frequency Fuel-Cell Inverter
,”
24th IEEE Applied Power Electronics Conference
(
APEC 2009
), Washington, DC, Feb. 15–19, pp.
1805
1812
.
2.
Mazumder
,
S. K.
,
Burra
,
R. K.
, and
Acharya
,
K.
,
2007
, “
A Ripple-Mitigating and Energy-Efficient Fuel Cell Power-Conditioning System
,”
IEEE Trans. Power Electron.
,
22
(
4
), pp.
1437
1452
.
3.
Mazumder
,
S. K.
,
Acharya
,
K.
,
Haynes
,
C.
,
Williams
,
R.
,
von Spakovsky
,
M. R.
,
Nelson
,
D.
,
Rancruel
,
D.
,
Hartvigsen
,
J.
, and
Gemmen
,
R.
,
2004
, “
Solid-Oxide-Fuel-Cell Performance and Durability: Resolution of the Effects of Power-Conditioning Systems and Application Loads
,”
IEEE Trans. Power Electron.
,
19
(
5
), pp.
1263
1278
.
4.
Haibing
,
H.
,
Harb
,
S.
,
Kutkut
,
N.
,
Batarseh
,
I.
, and
Shen
,
Z. J.
,
2013
, “
A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems
,”
IEEE Trans. Power Electron.
,
28
(
6
), pp.
2711
2726
.
5.
Sun
,
Y.
,
Liu
,
Y.
,
Su
,
M.
,
Xiong
,
W.
, and
Yang
,
J.
,
2015
, “
Review of Active Power Decoupling Topologies in Single-Phase Systems
,”
IEEE Trans. Power Electron.
(in press).
6.
Kassakian
,
J. G.
,
Schlecht
,
M. F.
, and
Verghese
,
G. C.
,
1991
,
Principles of Power Electronics
,
Addison Wesley
,
Washington, DC
.
7.
Singhall
,
S. C.
, and
Kendall
,
K.
,
2003
,
High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications
,
Elsevier
,
Atlanta, GA
.
8.
Panayotounakos
,
D. E.
,
Sotiropoulos
,
N. B.
,
Sotiropoulou
,
A. B.
, and
Panayotounakou
,
N. D.
,
2005
, “
Exact Analytic Solutions of Nonlinear Boundary Value Problems in Fluid Mechanics (Blasius Equations)
,”
J. Math. Phys.
,
46
(
3
), p.
033101
.
9.
Pradhan
,
S.
,
Mazumder
,
S. K.
,
Hartvigsen
,
J.
, and
Hollist
,
M.
,
2007
,
Effects of Electrical Feedbacks on Planar Solid-Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
2
), pp.
154
166
.
10.
Battelle Memorial Institute
,
2014
, “
Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications
,” U.S. Department of Energy, Golden, CO, Report No. DE-EE0005250.
You do not currently have access to this content.