Abstract

As an emerging type of high-density lithium-ion batteries (LIBs) for electric vehicles, 21700 cylindrical batteries may suffer inevitable mechanical vibrations, curbstone impact/penetration, and crash accidents, which probably induce internal short circuit (ISC), thermal runaway, and more catastrophic events such as fire/explosion. Therefore, exploring the mechanical behavior quantitively serves as a cornerstone for a better understanding of the safety behaviors of batteries. This paper focuses on the characterization of the tensile mechanical behavior of the electrodes under different state-of-charges (SOCs) coupled with strain rate effect. In the meantime, a numerical computation model is also established to provide a fundamental understanding of the electrode deformation. We discover that both anodes and cathodes are highly anisotropic at various electrochemical statuses, and strong strain rate dependency can be observed. Results provide an in-depth and systematic characterization of the mechanical behaviors of the electrodes and a powerful tool for the future design, evaluation, and manufacturing of safer batteries.

References

1.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
. 10.1016/j.ensm.2019.06.036
2.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
. 10.1016/j.jpowsour.2009.11.048
3.
Goodenough
,
J. B.
, and
Kim
,
Y.
,
2010
, “
Challenges for Rechargeable Li Batteries†
,”
Chem. Mater.
,
22
(
3
), pp.
587
603
. 10.1021/cm901452z
4.
Peng
,
P.
, and
Jiang
,
F.
,
2016
, “
Thermal Safety of Lithium-Ion Batteries With Various Cathode Materials: A Numerical Study
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1008
1016
. 10.1016/j.ijheatmasstransfer.2016.07.088
5.
Wang
,
L.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
, pp.
265
273
. 10.1016/j.jpowsour.2018.05.007
6.
Wang
,
L.
,
Duan
,
X.
,
Liu
,
B.
,
Li
,
Q. M.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Deformation and Failure Behaviors of Anode in Lithium-Ion Batteries: Model and Mechanism
,”
J. Power Sources
,
448
, p.
227468
.
7.
Li
,
W.
,
Xia
,
Y.
,
Zhu
,
J.
, and
Luo
,
H.
,
2018
, “
State-of-Charge Dependence of Mechanical Response of Lithium-Ion Batteries: A Result of Internal Stress
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1537
A1546
. 10.1149/2.0051809jes
8.
Kermani
,
G.
, and
Sahraei
,
E.
,
2017
, “
Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries
,”
Energies
,
10
(
11
), p.
1730
. 10.3390/en10111730
9.
Barré
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S.
,
Gérard
,
M.
,
Suard
,
F.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
, pp.
680
689
. 10.1016/j.jpowsour.2013.05.040
10.
Shi
,
D.
,
Xiao
,
X.
,
Huang
,
X.
, and
Kia
,
H.
,
2011
, “
Modeling Stresses in the Separator of a Pouch Lithium-Ion Cell
,”
J. Power Sources
,
196
(
19
), pp.
8129
8139
. 10.1016/j.jpowsour.2011.05.026
11.
Ping
,
P.
,
Wang
,
Q.
,
Huang
,
P.
,
Sun
,
J.
, and
Chen
,
C.
,
2014
, “
Thermal Behaviour Analysis of Lithium-Ion Battery at Elevated Temperature Using Deconvolution Method
,”
Appl. Energy
,
129
, pp.
261
273
. 10.1016/j.apenergy.2014.04.092
12.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
13.
Yuan
,
C.
,
Gao
,
X.
,
Wong
,
H. K.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
. 10.1149/2.1071906jes
14.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
. 10.1016/j.jpowsour.2018.12.059
15.
Sahraei
,
E.
,
Kahn
,
M.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2015
, “
Modelling of Cracks Developed in Lithium-Ion Cells Under Mechanical Loading
,”
RSC Adv.
,
5
(
98
), pp.
80369
80380
. 10.1039/C5RA17865G
16.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
. 10.1016/j.apenergy.2016.03.108
17.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
. 10.1016/j.jpowsour.2012.04.055
18.
Pan
,
Z.
,
Sedlatschek
,
T.
, and
Xia
,
Y.
,
2020
, “
Effect of State-of-Charge and Air Exposure on Tensile Mechanical Properties of Lithium-Ion Battery Electrodes
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090517
.
19.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
. 10.1016/j.matdes.2016.01.082
20.
Xu
,
J.
,
Liu
,
B.
, and
Hu
,
D.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
21829
. 10.1038/srep21829
21.
Abada
,
S.
,
Marlair
,
G.
,
Lecocq
,
A.
,
Petit
,
M.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2016
, “
Safety Focused Modeling of Lithium-Ion Batteries: A Review
,”
J. Power Sources
,
306
, pp.
178
192
. 10.1016/j.jpowsour.2015.11.100
22.
Yuan
,
C.
,
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Generalized Separator Failure Criteria for Internal Short Circuit of Lithium-Ion Battery
,”
J. Power Sources
,
467
, p.
228360
. 10.1016/j.jpowsour.2020.228360
23.
Lai
,
W.-J.
,
Ali
,
M. Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Modules Under Various Loading Conditions
,”
J. Power Sources
,
248
, pp.
789
808
. 10.1016/j.jpowsour.2013.09.128
24.
Sahraei
,
E.
,
Bosco
,
E.
,
Dixon
,
B.
, and
Lai
,
B.
,
2016
, “
Microscale Failure Mechanisms Leading to Internal Short Circuit in Li-Ion Batteries Under Complex Loading Scenarios
,”
J. Power Sources
,
319
, pp.
56
65
. 10.1016/j.jpowsour.2016.04.005
25.
Zhu
,
J.
,
Feng
,
J.
, and
Guo
,
Z.
,
2014
, “
Mechanical Properties of Commercial Copper Current-Collector Foils
,”
RSC Adv.
,
4
(
101
), pp.
57671
57678
. 10.1039/C4RA07675C
26.
Zhang
,
S.
,
Sakane
,
M.
,
Nagasawa
,
T.
, and
Kobayashi
,
K.
,
2011
, “
Mechanical Properties of Copper Thin Films Used in Electronic Devices
,”
Procedia Eng.
,
10
, pp.
1497
1502
. 10.1016/j.proeng.2011.04.250
27.
Zhang
,
X.
,
Shyy
,
W.
, and
Marie Sastry
,
A.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
.
28.
Zhang
,
X.
,
Ross
,
P. N.
,
Kostecki
,
R.
,
Kong
,
F.
,
Sloop
,
S.
,
Kerr
,
J. B.
,
Striebel
,
K.
,
Cairns
,
E. J.
, and
McLarnon
,
F.
,
2001
, “
Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles
,”
J. Electrochem. Soc.
,
148
(
5
), pp.
A463
A470
.
29.
Kramer
,
E.
,
Passerini
,
S.
, and
Winter
,
M.
,
2012
, “
Dependency of Aluminum Collector Corrosion in Lithium Ion Batteries on the Electrolyte Solvent
,”
ECS Electrochem. Lett.
,
1
(
5
), pp.
C9
C11
. 10.1149/2.004205eel
You do not currently have access to this content.