Abstract

As one of the commonly used power sources for electric vehicles, cell phones, and laptops, lithium-ion batteries (LIBs) have aroused more and more attention. Lithium-ion batteries will inevitably suffer from external abuse loading, triggering thermal runaway. Nail penetration is one of the most dangerous external loading methods, so it is meaningful to study the failure behaviors under this loading condition. In this article, the experimental study of 18650 cylindrical lithium-ion batteries (with nickel cobalt aluminum oxide cathode) under axial nail penetration is carried out. Force, temperature, and voltage data are recorded synchronously to learn its mechanical, thermal, and electrochemical behaviors, respectively. Then, the loading velocity effect is discussed, and the results show that the loading velocity has no obvious effect on failure properties of lithium-ion battery. Besides, deformation and failure properties of lithium-ion battery are discussed in detail. A simple homogenous computational model is established to predict the mechanical responses of the battery. The partially detailed model is also established to explore the failure mechanism. The batteries are disassembled after loading to better understand the failure morphologies. Two failure modes are discovered through experiments and computational model. The findings can contribute to a better understanding of the failure mechanism of lithium-ion battery under axial nail penetration, providing reference for battery safe design.

References

1.
Zhu
,
J.
,
Wierzbicki
,
T.
, and
Li
,
W.
,
2018
, “
A Review of Safety-Focused Mechanical Modeling of Commercial Lithium-Ion Batteries
,”
J. Power Sources Review
,
378
, pp.
153
168
. 10.1016/j.jpowsour.2017.12.034
2.
Dubaniewicz
,
T. H.
, and
DuCarme
,
J. P.
,
2013
, “
Are Lithium Ion Cells Intrinsically Safe?
,”
IEEE Trans. Ind. Appl.
,
49
(
6
), pp.
2451
2460
. 10.1109/TIA.2013.2263274
3.
Chen
,
M.
,
Zhou
,
D.
,
Chen
,
X.
,
Zhang
,
W.
,
Liu
,
J.
,
Yuen
,
R.
, and
Wang
,
J.
,
2015
, “
Investigation on the Thermal Hazards of 18650 Lithium Ion Batteries by Fire Calorimeter
,”
J. Therm. Anal. Calorim.
,
122
(
2
), pp.
755
763
. 10.1007/s10973-015-4751-5
4.
Chen
,
W. C.
,
Li
,
J. D.
,
Shu
,
C. M.
, and
Wang
,
Y. W.
,
2015
, “
Effects of Thermal Hazard on 18650 Lithium-Ion Battery Under Different States of Charge
,”
J. Therm. Anal. Calorim.
,
121
(
1
), pp.
525
531
. 10.1007/s10973-015-4672-3
5.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wu
,
P.
,
Kulp
,
C.
, and
Prasser
,
S.
,
2015
, “
Thermal Runaway Propagation Model for Designing a Safer Battery Pack With 25 Ah LiNixCoyMnzO2 Large Format Lithium Ion Battery
,”
Appl. Energy
,
154
, pp.
74
91
. 10.1016/j.apenergy.2015.04.118
6.
Zhang
,
X.
, and
Wierzbicki
,
T.
,
2015
, “
Characterization of Plasticity and Fracture of Shell Casing of Lithium-Ion Cylindrical Battery
,”
J. Power Sources
,
280
, pp.
47
56
. 10.1016/j.jpowsour.2015.01.077
7.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
. 10.1016/j.jpowsour.2011.10.094
8.
Avdeev
,
I.
, and
Gilaki
,
M.
,
2014
, “
Structural Analysis and Experimental Characterization of Cylindrical Lithium-ion Battery Cells Subject to Lateral Impact
,”
J. Power Sources
,
271
, pp.
382
391
. 10.1016/j.jpowsour.2014.08.014
9.
Chiu
,
K.-C.
,
Lin
,
C.-H.
,
Yeh
,
S.-F.
,
Lin
,
Y.-H.
, and
Chen
,
K.-C.
,
2014
, “
An Electrochemical Modeling of Lithium-Ion Battery Nail Penetration
,”
J. Power Sources
,
251
, pp.
254
263
. 10.1016/j.jpowsour.2013.11.069
10.
Doh
,
C.-H.
,
Kim
,
D.-H.
,
Kim
,
H.-S.
,
Shin
,
H.-M.
,
Jeong
,
Y.-D.
,
Moon
,
S.-I.
,
Jin
,
B.-S.
,
Eom
,
S. W.
,
Kim
,
H.-S.
,
Kim
,
K.-W.
,
Oh
,
D.-H.
, and
Veluchamy
,
A.
,
2008
, “
Thermal and Electrochemical Behaviour of C/LixCoO2 Cell During Safety Test
,”
J. Power Sources
,
175
(
2
), pp.
881
885
. 10.1016/j.jpowsour.2007.09.102
11.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Failure Anal.
,
53
, pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
12.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
. 10.1016/j.jpowsour.2012.04.055
13.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
. 10.1016/j.jpowsour.2012.07.057
14.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
. 10.1016/j.jpowsour.2013.04.135
15.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
. 10.1016/j.apenergy.2016.03.108
16.
Zhu
,
J.
,
Zhang
,
X.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
, pp.
332
340
. 10.1016/j.jpowsour.2016.10.064
17.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
. 10.1016/j.jpowsour.2018.12.059
18.
Fang
,
W.
,
Ramadass
,
P.
, and
Zhang
,
Z.
,
2014
, “
Study of Internal Short in a Li-Ion Cell-II. Numerical Investigation Using a 3D Electrochemical-Thermal Model
,”
J. Power Sources
,
248
, pp.
1090
1098
. 10.1016/j.jpowsour.2013.10.004
19.
Guo
,
M.
,
Kim
,
G.-H.
, and
White
,
R. E.
,
2013
, “
A Three-Dimensional Multi-Physics Model for a Li-Ion Battery
,”
J. Power Sources
,
240
, pp.
80
94
. 10.1016/j.jpowsour.2013.03.170
20.
Kim
,
G.-H.
,
Smith
,
K.
,
Lee
,
K.-J.
,
Santhanagopalan
,
S.
, and
Pesaran
,
A.
,
2011
, “
Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
A955
A969
. 10.1149/1.3597614
21.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
22.
Liu
,
B.
,
Yin
,
S.
, and
Xu
,
J.
,
2016
, “
Integrated Computation Model of Lithium-Ion Battery Subject to Nail Penetration
,”
Appl. Energy
,
183
, pp.
278
289
. 10.1016/j.apenergy.2016.08.101
23.
Liu
,
B. H.
,
Zhao
,
H.
,
Yu
,
H. L.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
. 10.1016/j.electacta.2017.10.045
24.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Jiang
,
H.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Multiphysics Coupled Computational Model for Commercialized Si/Graphite Composite Anode
,”
J. Power Sources
,
450
, Art. No. 227667.
25.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
. 10.1016/j.ensm.2019.06.036
26.
Mao
,
B.
,
Chen
,
H.
,
Cui
,
Z.
,
Wu
,
T.
, and
Wang
,
Q.
,
2018
, “
Failure Mechanism of the Lithium Ion Battery During Nail Penetration
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1103
1115
. 10.1016/j.ijheatmasstransfer.2018.02.036
27.
Wang
,
J.
,
Mei
,
W.
,
Cui
,
Z.
,
Dong
,
D.
,
Shen
,
W.
,
Hong
,
J.
,
Chen
,
H.
,
Duan
,
Q.
,
Wang
,
Q.
, and
Sun
,
J.
,
2020
, “
Investigation of the Thermal Performance in Lithium-Ion Cells During Polyformaldehyde Nail Penetration
,”
J. Therm. Anal. Calorim.
, 10.1007/s10973-020-09853-y
28.
Wang
,
J.
,
Mei
,
W.
,
Cui
,
Z.
,
Shen
,
W.
,
Duan
,
Q.
,
Jin
,
Y.
,
Nie
,
J.
,
Tian
,
Y.
,
Wang
,
Q.
, and
Sun
,
J.
,
2020
, “
Experimental and Numerical Study on Penetration-Induced Internal Short-Circuit of Lithium-Ion Cell
,”
Appl. Therm. Eng.
,
171
, Art. No. 115082.
29.
Xu
,
J.
,
Mei
,
W.
,
Zhao
,
C.
,
Liu
,
Y.
,
Zhang
,
L.
, and
Wang
,
Q.
,
2020
, “
Study on Thermal Runaway Mechanism of 1000 mAh Lithium ion Pouch Cell During Nail Penetration
,”
J. Therm. Anal. Calorim.
10.1007/s10973-020-10149-4
30.
Wang
,
L.
,
Yin
,
S.
,
Yu
,
Z.
,
Wang
,
Y.
,
Yue
,
T. X.
,
Zhao
,
J.
,
Xie
,
Z.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Unlocking the Significant Role of Shell Material for Lithium-Ion Battery Safety
,”
Mater. Des.
,
160
, pp.
601
610
. 10.1016/j.matdes.2018.10.002
31.
Wang
,
L.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
, pp.
265
273
. 10.1016/j.jpowsour.2018.05.007
32.
Xu
,
J.
,
Wang
,
L.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
. 10.1016/j.matdes.2016.01.082
You do not currently have access to this content.