Abstract

A facile and environmentally friendly approach to produce self-doped hierarchically porous carbon as electrode material for high-performance supercapacitor was demonstrated. Three-dimensional honeycomb-like hierarchically porous carbon was successfully obtained by one-step carbonization and activation of sodium carboxymethyl cellulose (CMC) via K2CO3. With the optimized temperature of carbonization and activation, the porous carbon material achieved well-shaped hierarchically pores (micro-, meso-, and macropores) like a honeycomb, ultrahigh specific surface area (1666 m2 g−1), as well as highly O-self-doping (3.6 at%), endowing an excellent electrochemical properties for the electrode in a three-electrode system. The porous carbon electrode material delivered a high specific capacitance of 300.8 F g−1 at 1 A g−1, an eminent rate capability of 228.4 F g−1 at the current density up to 20 A g−1 and outstanding cycle stability of 94.3% retention after 10,000 cycles. Therefore, the CMC-derived hierarchical porous carbon activated by K2CO3 would have promising foreground in the application of supercapacitors.

References

1.
Yan
,
J.
,
Wang
,
Q.
,
Wei
,
T.
, and
Fan
,
Z.
,
2014
, “
Recent Advances in Design and Fabrication of Electrochemical Supercapacitors With High Energy Densities
,”
Adv. Energy Mater.
,
4
(
4
), p.
1300816
.
2.
Raj
,
C. J.
,
Rajesh
,
M.
,
Manikandan
,
R.
,
Yu
,
K. H.
,
Anusha
,
J. R.
,
Ahn
,
J. H.
,
Kim
,
D. W.
,
Park
,
S. Y.
, and
Kim
,
B. C.
,
2018
, “
High Electrochemical Capacitor Performance of Oxygen and Nitrogen Enriched Activated Carbon Derived From the Pyrolysis and Activation of Squid Gladius Chitin
,”
J. Power Sources
,
386
, pp.
66
76
.
3.
Wang
,
Y.
,
Liu
,
R.
,
Tian
,
Y.
,
Sun
,
Z.
,
Huang
,
Z.
,
Wu
,
X.
, and
Li
,
B.
,
2020
, “
Heteroatoms-doped Hierarchical Porous Carbon Derived From Chitin for Flexible all-Solid-State Symmetric Supercapacitors
,”
Chem. Eng. J.
,
384
, p.
123263
.
4.
Chen
,
Y.
,
Liu
,
Y.
,
Dong
,
Y.
,
Xia
,
Y.
,
Hung
,
C.
,
Liu
,
L.
,
Bi
,
W.
, and
Li
,
W.
,
2020
, “
Synthesis of Sandwich-Like Graphene@Mesoporous Nitrogen-Doped Carbon Nanosheets for Application in High-Performance Supercapacitors
,”
Nanotechnology
,
31
(
2
), p.
24001
.
5.
Hao
,
P.
,
Ma
,
X.
,
Xie
,
J.
,
Lei
,
F.
,
Li
,
L.
,
Zhu
,
W.
,
Cheng
,
X.
,
Cui
,
G.
, and
Tang
,
B.
,
2018
, “
Removal of Toxic Metal Ions Using Chitosan Coated Carbon Nanotube Composites for Supercapacitors
,”
Sci. China Chem.
,
61
(
7
), pp.
797
805
.
6.
Chen
,
K.
,
Liu
,
J.
,
Bian
,
H.
,
Wei
,
J.
,
Wang
,
W.
, and
Shao
,
Z.
,
2020
, “
Ingenious Preparation of N/NiOx co-Doped Hierarchical Porous Carbon Nanosheets Derived From Chitosan Nanofibers for High Performance Supercapacitors
,”
Nanotechnology
,
31
(
33
), p.
335713
.
7.
Schlee
,
P.
,
Hosseinaei
,
O.
,
Baker
,
D.
,
Landmér
,
A.
,
Tomani
,
P.
,
Mostazo-López
,
M. J.
,
Cazorla-Amorós
,
D.
,
Herou
,
S.
, and
Titirici
,
M.
,
2019
, “
From Waste to Wealth: From Kraft Lignin to Free-Standing Supercapacitors
,”
Carbon
,
145
, pp.
470
480
.
8.
Zhang
,
Z.
,
Li
,
L.
,
Qing
,
Y.
,
Lu
,
X.
,
Wu
,
Y.
,
Yan
,
N.
, and
Yang
,
W.
,
2019
, “
Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High-Performance Supercapacitor
,”
J. Phys. Chem. C
,
123
(
38
), pp.
23374
23381
.
9.
Wang
,
G.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2012
, “
A Review of Electrode Materials for Electrochemical Supercapacitors
,”
Chem. Soc. Rev.
,
41
(
2
), pp.
797
828
.
10.
Luo
,
H.
,
Chen
,
Y.
,
Wang
,
B.
,
Zhang
,
J.
,
Zhao
,
X.
, and
Mu
,
B.
,
2017
, “
Nitrogen-self-doped Mesoporous Carbons Synthesized by the Direct Carbonization of Ferric Ammonium Citrate for High-Performance Supercapacitors
,”
J. Solid State Electrochem.
,
21
(
2
), pp.
515
524
.
11.
Korenblit
,
Y.
,
Rose
,
M.
,
Kockrick
,
E.
,
Borchardt
,
L.
,
Kvit
,
A.
,
Kaskel
,
S.
, and
Yushin
,
G.
,
2010
, “
High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon
,”
ACS Nano.
,
4
(
3
), pp.
1337
1344
.
12.
Chen
,
W.
,
Wang
,
X.
,
Liu
,
C.
,
Luo
,
M.
,
Yang
,
P.
, and
Zhou
,
X.
,
2020
, “
Rapid Single-Step Synthesis of Porous Carbon From an Agricultural Waste for Energy Storage Application
,”
Waste Manage.
,
102
, pp.
330
339
.
13.
Zhang
,
Y.
,
Zhao
,
C.
,
Ong
,
W. K.
, and
Lu
,
X.
,
2019
, “
Ultrafast-Freezing-Assisted Mild Preparation of Biomass-Derived, Hierarchically Porous, Activated Carbon Aerogels for High-Performance Supercapacitors
,”
ACS Sustainable Chem. Eng.
,
7
(
1
), pp.
403
411
.
14.
Tian
,
J.
,
Liu
,
C.
,
Lin
,
C.
, and
Ma
,
M.
,
2019
, “
Constructed Nitrogen and Sulfur Codoped Multilevel Porous Carbon From Lignin for High-Performance Supercapacitors
,”
J. Alloys Compd.
,
789
, pp.
435
442
.
15.
Wang
,
D.
,
Nai
,
J.
,
Xu
,
L.
, and
Sun
,
T.
,
2019
, “
Gunpowder Chemistry-Assisted Exfoliation Approach for the Synthesis of Porous Carbon Nanosheets for High-Performance Ionic Liquid Based Supercapacitors
,”
J. Energy Storage
,
24
, pp.
100761
100764
.
16.
Cui
,
Y.
,
Wang
,
H.
,
Xu
,
X.
,
Lv
,
Y.
,
Shi
,
J.
,
Liu
,
W.
,
Chen
,
S.
, and
Wang
,
X.
,
2018
, “
Nitrogen-doped Porous Carbons Derived From a Natural Polysaccharide for Multiple Energy Storage Devices
,”
Sustainable Energy Fuels
,
2
(
2
), pp.
381
389
.
17.
Li
,
J.
,
Wang
,
N.
,
Tian
,
J.
,
Qian
,
W.
, and
Chu
,
W.
,
2018
, “
Cross-Coupled Macro-Mesoporous Carbon Network Toward Record High Energy-Power Density Supercapacitor at 4 V
,”
Adv. Funct. Mater.
,
28
(
51
), p.
1806153
.
18.
Wang
,
K.
,
Cao
,
Y.
,
Wang
,
X.
,
Castro
,
M. A.
,
Luo
,
B.
,
Gu
,
Z.
,
Liu
,
J.
,
Hoefelmeyer
,
J. D.
, and
Fan
,
Q.
,
2016
, “
Rod-shape Porous Carbon Derived From Aniline Modified Lignin for Symmetric Supercapacitors
,”
J. Power Sources
,
307
, pp.
462
467
.
19.
Cheng
,
J.
,
Xu
,
Q.
,
Wang
,
X.
,
Li
,
Z.
,
Wu
,
F.
,
Shao
,
J.
, and
Xie
,
H.
,
2019
, “
Ultrahigh-surface-area Nitrogen-Doped Hierarchically Porous Carbon Materials Derived From Chitosan and Betaine Hydrochloride Sustainable Precursors for High-Performance Supercapacitors
,”
Sustainable Energy Fuels
,
3
(
5
), pp.
1215
1224
.
20.
Bai
,
Q.
,
Xiong
,
Q.
,
Li
,
C.
,
Shen
,
Y.
, and
Uyama
,
H.
,
2018
, “
Hierarchical Porous Carbons From a Sodium Alginate/Bacterial Cellulose Composite for High-Performance Supercapacitor Electrodes
,”
Appl. Surf. Sci.
,
455
, pp.
795
807
.
21.
Xing
,
L.
,
Chen
,
X.
,
Tan
,
Z.
,
Chi
,
M.
,
Xie
,
W.
,
Huang
,
J.
,
Liang
,
Y.
,
Zheng
,
M.
,
Hu
,
H.
,
Dong
,
H.
,
Liu
,
Y.
, and
Xiao
,
Y.
,
2019
, “
Synthesis of Porous Carbon Material with Suitable Graphitization Strength for High Electrochemical Capacitors
,”
ACS Sustainable Chem. Eng.
,
7
(
7
), pp.
6601
6610
.
22.
Lin
,
Z.
,
Xiang
,
X.
,
Peng
,
S.
,
Jiang
,
X.
, and
Hou
,
L.
,
2018
, “
Facile Synthesis of Chitosan-Based Carbon With Rich Porous Structure for Supercapacitor with Enhanced Electrochemical Performance
,”
J. Electroanal. Chem.
,
823
, pp.
563
572
.
23.
Shu
,
Y.
,
Bai
,
Q.
,
Fu
,
G.
,
Xiong
,
Q.
,
Li
,
C.
,
Ding
,
H.
,
Shen
,
Y.
, and
Uyama
,
H.
,
2019
, “
Hierarchical Porous Carbons From Polysaccharides Carboxymethyl Cellulose, Bacterial Cellulose, and Citric Acid for Supercapacitor
,”
Carbohydr. Polym.
,
227
, pp.
115346
.
24.
Lin
,
R.
,
Li
,
A.
,
Lu
,
L.
, and
Cao
,
Y.
,
2015
, “
Preparation of Bulk Sodium Carboxymethyl Cellulose Aerogels with Tunable Morphology
,”
Carbohydr. Polym.
,
118
, pp.
126
132
.
25.
Shi
,
D.
,
Wang
,
F.
,
Lan
,
T.
,
Zhang
,
Y.
, and
Shao
,
Z.
,
2016
, “
Convenient Fabrication of Carboxymethyl Cellulose Electrospun Nanofibers Functionalized with Silver Nanoparticles
,”
Cellulose
,
23
(
3
), pp.
1899
1909
.
26.
Lee
,
B.-M.
,
Jeong
,
C.-U.
,
Hong
,
S.-K.
,
Yun
,
J.-M.
, and
Choi
,
J.-H.
,
2020
, “
Eco-Friendly Fabrication of Porous Carbon Monoliths From Water-Soluble Carboxymethyl Cellulose for Supercapacitor Applications
,”
J. Ind. Eng. Chem.
,
82
, pp.
367
373
.
27.
Geng
,
G.
,
Jiao
,
L.
,
Ma
,
J.
,
Fang
,
G.
, and
Wang
,
D.
,
2017
, “
Unconventional Mesopore Carbon Nanomesh Prepared Through Explosione-Assisted Activation Approach: A Robust Electrode Material for Ultrafast Organic Electrolyte Supercapacitors
,”
Carbon
,
119
, pp.
30
39
.
28.
Miao
,
Y.
,
Jian
,
L.
, and
Wang
,
L.
,
2016
, “
KOH-activated Carbon Aerogels Derived From Sodium Carboxymethyl Cellulose for High-Performance Supercapacitors and dye Adsorption
,”
Chem. Eng. J.
,
310
(
1
), pp.
300
306
.
29.
Miao
,
Y.
,
Han
,
Y.
,
Jian
,
L.
, and
Wang
,
L.
,
2017
, “
One-Step Synthesis of Sodium Carboxymethyl Cellulose-Derived Carbon Aerogel/Nickel Oxide Composites for Energy Storage
,”
Chem. Eng. J.
,
324
(
15
), pp.
287
295
.
30.
An
,
N.
,
An
,
Y.
,
Hu
,
Z. A.
,
Guo
,
B.
,
Yang
,
Y. Y.
, and
Lei
,
Z. Q.
,
2015
, “
Graphene Hydrogels Functionalized non-Covalently by Alizarin: an Ideal Electrode Materials for Symmetric Supercapacitor
,”
J. Mater. Chem. A.
,
3
(
44
), pp.
22239
22246
.
31.
Cheng
,
P.
,
Gao
,
S.
,
Zang
,
P.
,
Yang
,
X.
,
Bai
,
Y.
,
Xu
,
H.
,
Liu
,
Z.
, and
Lei
,
Z.
,
2015
, “
Hierarchically Porous Carbon by Activation of Shiitake Mushroom for Capacitive Energy Storage
,”
Carbon
,
93
, pp.
315
324
.
32.
Ouyang
,
T.
,
Cheng
,
K.
,
Gao
,
Y.
,
Kong
,
S.
,
Ye
,
K.
,
Wang
,
G.
, and
Cao
,
D.
,
2016
, “
Molten Salt Synthesis of Nitrogen Doped Porous Carbon: a new Preparation Methodology for High-Volumetric Capacitance Electrode Materials
,”
J. Mater. Chem. A. Mater. Energy Sustainability
,
4
(
25
), pp.
9832
9843
.
33.
Ouyang
,
T.
,
Zhang
,
T.
,
Wang
,
H.
,
Yang
,
F.
,
Yan
,
J.
,
Zhu
,
K.
,
Ye
,
K.
,
Wang
,
G.
,
Zhou
,
L.
,
Cheng
,
K.
, and
Cao
,
D.
,
2018
, “
High-throughput Fabrication of Porous Carbon by Chemical Foaming Strategy for High Performance Supercapacitor
,”
Chem. Eng. J.
,
352
, pp.
459
468
.
34.
Mao
,
N.
,
Wang
,
H.
,
Sui
,
Y.
,
Cui
,
Y.
,
Pokrzywinski
,
J.
,
Shi
,
J.
,
Liu
,
W.
,
Chen
,
S.
,
Wang
,
X.
, and
Mitlin
,
D.
,
2017
, “
Extremely High-Rate Aqueous Supercapacitor Fabricated Using Doped Carbon Nanoflakes with Large Surface Area and Mesopores at Near-Commercial Mass Loading
,”
Nano Res.
,
10
(
5
), pp.
1767
1783
.
35.
Huang
,
G.
,
Wang
,
Y.
,
Zhang
,
T.
,
Wu
,
X.
, and
Cai
,
J.
,
2019
, “
High-performance Hierarchical N-Doped Porous Carbons From Hydrothermally Carbonized Bamboo Shoot Shells for Symmetric Supercapacitors
,”
J. Taiwan Inst. Chem. Eng.
,
96
, pp.
672
680
.
36.
Xie
,
Q.
,
Bao
,
R.
,
Zheng
,
A.
,
Zhang
,
Y.
,
Wu
,
S.
,
Xie
,
C.
, and
Zhao
,
P.
,
2016
, “
Sustainable Low-Cost Green Electrodes with High Volumetric Capacitance for Aqueous Symmetric Supercapacitors with High Energy Density
,”
ACS Sustainable Chem. Eng.
,
4
(
3
), pp.
1422
1430
.
37.
Ye
,
Z.
,
Wang
,
F.
,
Jia
,
C.
, and
Shao
,
Z.
,
2018
, “
Biomass-based O, N-Codoped Activated Carbon Aerogels with Ultramicropores for Supercapacitors
,”
J. Mater. Sci.
,
53
(
17
), pp.
12374
12387
.
38.
Han
,
J.
,
Zhang
,
L. L.
,
Lee
,
S.
,
Oh
,
J.
,
Lee
,
K. S.
,
Potts
,
J. R.
,
Ji
,
J.
,
Zhao
,
X.
,
Ruoff
,
R. S.
, and
Park
,
S.
,
2013
, “
Generation of B-Doped Graphene Nanoplatelets Using a Solution Process and Their Supercapacitor Applications
,”
ACS Nano.
,
7
(
1
), pp.
19
26
.
39.
Jayawickramage
,
R. A. P.
,
Balkus
,
K. J.
, and
Ferraris
,
J. P.
,
2019
, “
Binder Free Carbon Nanofiber Electrodes Derived From Polyacrylonitrile-Lignin Blends for High Performance Supercapacitors
,”
Nanotechnology
,
30
(
35
), p.
355402
.
40.
Cai
,
T.
,
Kuang
,
L.
,
Wang
,
C.
,
Jin
,
C.
,
Wang
,
Z.
, and
Sun
,
Q.
,
2019
, “
Cellulose as an Adhesive for the Synthesis of Carbon Aerogel with a 3D Hierarchical Network Structure for Capacitive Energy Storage
,”
ChemElectroChem.
,
6
(
9
), pp.
2586
2594
.
41.
Chen
,
H.
,
Liu
,
T.
,
Mou
,
J.
,
Zhang
,
W.
,
Jiang
,
Z.
,
Liu
,
J.
,
Huang
,
J.
, and
Liu
,
M.
,
2019
, “
Free-Standing N-Self-Doped Carbon Nanofiber Aerogels for High-Performance all-Solid-State Supercapacitors
,”
Nano Energy
,
63
, p.
103836
.
42.
Cao
,
J.
,
Zhu
,
C.
,
Aoki
,
Y.
, and
Habazaki
,
H.
,
2018
, “
Starch-derived Hierarchical Porous Carbon With Controlled Porosity for High Performance Supercapacitors
,”
ACS Sustainable Chem. Eng.
,
6
(
6
), pp.
7292
7303
.
43.
Dai
,
Z.
,
Ren
,
P.
,
Jin
,
Y.
,
Zhang
,
H.
, and
Zhang
,
Q.
,
2019
, “
Nitrogen-Sulphur Co-Doped Graphenes Modified Electrospun Lignin/ Polyacrylonitrile-Based Carbon Nanofiber as High Performance Supercapacitor
,”
J. Power Sources
,
437
, p.
226937
.
44.
Huo
,
S.
,
Liu
,
M.
,
Wu
,
L.
,
Liu
,
M.
,
Xu
,
M.
,
Ni
,
W.
, and
Yan
,
Y. M.
,
2018
, “
Methanesulfonic Acid-Assisted Synthesis of N/S co-Doped Hierarchically Porous Carbon for High Performance Supercapacitors
,”
J. Power Sources
,
387
, pp.
81
90
.
45.
Song
,
P.
,
He
,
X.
,
Shen
,
X.
,
Sun
,
Y.
,
Li
,
Z.
,
Yuan
,
A.
,
Zhai
,
L.
, and
Zhang
,
D.
,
2019
, “
Dissolution-Assistant all-in-one Synthesis of N and S Dual-Doped Porous Carbon for High-Performance Supercapacitors
,”
Adv. Powder Technol.
,
30
(
10
), pp.
2211
2217
.
46.
Jiang
,
X.
,
Liu
,
C.
,
Shi
,
G.
,
Wang
,
G.
,
Wang
,
Z.
,
Jia
,
S.
,
Dong
,
Y.
,
Mishra
,
P.
,
Tian
,
H.
, and
Liu
,
Y.
,
2019
, “
The Preparation of Liquefied Bio-Stalk Carbon Nanofibers and Their Application in Supercapacitors
,”
RSC Adv.
,
9
(
40
), pp.
23324
23333
.
47.
Zhao
,
Y.
,
Wei
,
M.
,
Zhu
,
Z.
,
Zhang
,
J.
,
Xiao
,
L.
, and
Hou
,
L.
,
2020
, “
Facile Preparation of N-O Codoped Hierarchically Porous Carbon From Alginate Particles for High Performance Supercapacitor
,”
J. Colloid Interface Sci.
,
563
, pp.
414
425
.
48.
Zhong
,
Y.
,
Shi
,
T.
,
Huang
,
Y.
,
Cheng
,
S.
,
Liao
,
G.
, and
Tang
,
Z.
,
2018
, “
One-Step Synthesis of Porous Carbon Derived From Starch for all-Carbon Binder-Free High-Rate Supercapacitor
,”
Electrochim. Acta.
,
269
, pp.
676
685
.
49.
Long
,
C.
,
Zhuang
,
J.
,
Xiao
,
Y.
,
Zheng
,
M.
,
Hu
,
H.
,
Dong
,
H.
,
Lei
,
B.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2016
, “
Nitrogen-Doped Porous Carbon with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors
,”
J. Power Sources
,
310
, pp.
145
153
.
50.
Wu
,
M.
,
Ai
,
P.
,
Tan
,
M.
,
Jiang
,
B.
,
Li
,
Y.
,
Zheng
,
J.
,
Wu
,
W.
,
Li
,
Z.
,
Izhang
,
Q.
, and
He
,
X.
,
2014
, “
Synthesis of Starch-Derived Mesoporous Carbon for Electric Double Layer Capacitor
,”
Chem. Eng. J.
,
245
, pp.
166
172
.
51.
Zhao
,
J.
,
Jiang
,
Y.
,
Fan
,
H.
,
Liu
,
M.
,
Zhuo
,
O.
,
Wang
,
X.
,
Wu
,
Q.
,
Yang
,
L.
,
Ma
,
Y.
, and
Hu
,
Z.
,
2017
, “
Porous 3D Few-Layer Graphene-Like Carbon for Ultrahigh-Power Supercapacitors with Well-Defined Structure-Performance Relationship
,”
Adv. Mater.
,
29
(
11
), pp.
1604561
1604569
.
52.
Qu
,
S.
,
Wan
,
J.
,
Dai
,
C.
,
Jin
,
T.
, and
Ma
,
F.
,
2018
, “
Promising as High-Performance Supercapacitor Electrode Materials Porous Carbons Derived From Biological Lotus Leaf
,”
J. Alloys Compd
,
751
, pp.
107
116
.
You do not currently have access to this content.