Abstract

It is always an important research direction to improve the performance of solid oxide fuel cells (SOFCs) through structural optimization. For anode-supported SOFC, the thin cathode thickness results in an uneven distribution of oxygen concentration in the porous electrode, which limits the output performance. In this paper, a three-dimensional model of the anode-supported planar SOFC was established, and the thickness of the cathode diffusion layer in the area covered by the connector was increased to improve the uniformity of oxygen distribution in the cathode. The results show that increasing the thickness of the cathode diffusion layer under the connector can significantly improve the overall output performance of SOFC. The uniformity of oxygen concentration distribution in the cathode is improved, the local current density under the connector is increased, and the maximum output power density of the cell is increased by 29.14%. The results show that the output performance of the SOFC and the uniformity of gas distribution in the porous electrode can be improved by increasing the thickness of the cathode diffusion layer under the connector in the structure design and practical application of the SOFC. The research of this paper provides a reference for the optimization design of SOFC.

References

1.
Evrin
,
R. A.
, and
Dincer
,
I.
,
2020
, “
Development and Evaluation of an Integrated Solid Oxide Fuel Cell System for Medium Airplanes
,”
Int. J. Energy Res.
,
44
(
12
), pp.
9674
9685
.
2.
Wen
,
H.
,
Ordonez
,
J. C.
, and
Vargas
,
J. V. C.
,
2013
, “
Optimization of Single SOFC Structural Design for Maximum Power
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
12
25
.
3.
Silva
,
D.
, and
De Souza
,
T. M.
,
2017
, “
Novel Materials for Solid Oxide Fuel Cell Technologies: A Literature Review
,”
Int. J. Hydrogen Energy
,
42
(
41
), pp.
26020
26036
.
4.
Ma
,
Z. K.
,
Wang
,
X. X.
, and
Yang
,
Y.
,
2020
, “
Numerical Modeling of Ethanol-Fueled Solid Oxide Fuel Cells With a Ni–BaZr0.1Ce0.7 Y0.1Yb0.1O3-δ External Reformer
,”
Ionics
,
26
(
9
), pp.
4587
4598
.
5.
Kalra
,
P.
,
Garg
,
R. K.
, and
Kumar
,
A.
,
2020
, “
Parametric Sensitivity Analysis for a Natural Gas Fueled High Temperature Tubular Solid Oxide Fuel Cell
,”
Heliyon
,
6
(
7
), p.
e04450
.
6.
Timurkutluk
,
B.
,
Timurkutluk
,
C.
, and
Mat
,
M. D.
,
2016
, “
A Review on Cell/Stack Designs for High Performance Solid Oxide Fuel Cells
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1101
1121
.
7.
Suwanwarangkul
,
R.
,
Croiset
,
E.
, and
Fowler
,
M. W.
,
2003
, “
Performance Comparison of Fick's, Dusty-Gas and Stefan–Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
,
122
(
1
), pp.
9
18
.
8.
Lin
,
B.
,
Shi
,
Y.
, and
Cai
,
N.
,
2017
, “
Numerical Simulation of Cell-to-Cell Performance Variation Within a Syngas-Fuelled Planar Solid Oxide Fuel Cell Stack
,”
Appl. Therm. Eng.
,
114
, pp.
653
662
.
9.
Beale
,
S. B.
,
Andersson
,
M.
, and
Frandsen
,
H. L.
,
2021
, “
Continuum Scale Modelling and Complementary Experimentation of Solid Oxide Cells
,”
Prog. Energy Combust. Sci.
,
85
, p.
100902
.
10.
Zhan
,
R. B.
,
Wang
,
Y.
, and
Ni
,
M.
,
2020
, “
Three-Dimensional Simulation of Solid Oxide Fuel Cell With Metal Foam as Cathode Flow Distributor
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
6897
6911
.
11.
Russner
,
N.
,
Dierickx
,
S.
, and
Weber
,
A.
,
2020
, “
Multiphysical Modelling of Planar Solid Oxide Fuel Cell Stack Layers
,”
J. Power Sources
,
451
, p.
227552
.
12.
Cui
,
D. A.
,
Ji
,
Y. L.
, and
Chang
,
C.
,
2020
, “
Influence of Fuel Flow Rate on the Performance of Micro Tubular Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
45
(
24
), pp.
13459
13468
.
13.
He
,
Q. J.
,
Yu
,
J.
, and
Xu
,
H. R.
,
2020
, “
Thermal Effects in H2O and CO2 Assisted Direct Carbon Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
45
(
22
), pp.
12459
12475
.
14.
Takino
,
K.
,
Tachikawa
,
Y.
, and
Mori
,
K.
,
2020
, “
Simulation of SOFC Performance Using a Modified Exchange Current Density for Pre-Reformed Methane-Based Fuels
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
6912
6925
.
15.
Bianchi
,
F. R.
,
Spotorno
,
R.
, and
Piccardo
,
P.
,
2020
, “
Solid Oxide Fuel Cell Performance Analysis Through Local Modelling
,”
Catalysts
,
10
(
5
), p.
519
.
16.
Eichhorn Colombo
,
K. W.
,
Kharton
,
V. V.
, and
Berto
,
F.
,
2020
, “
Mathematical Multi-Physics Modeling and Simulation of a Solid Oxide Fuel Cell Unit for Thermo-Mechanical Stress Analyses
,”
J. Electrochem. Soc.
,
167
(
4
), p.
044514
.
17.
Ramadhani
,
F.
,
Hussain
,
M. A.
, and
Mokhlis
,
H.
,
2017
, “
Optimization Strategies for Solid Oxide Fuel Cell (SOFC) Application: A Literature Survey
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
460
484
.
18.
Bhattacharya
,
D.
,
Mukhopadhyay
,
J.
, and
Biswas
,
N.
,
2018
, “
Performance Evaluation of Different Bipolar Plate Designs of 3D Planar Anode-Supported SOFCs
,”
Int. J. Heat Mass Transfer
,
123
, pp.
382
396
.
19.
Saied
,
M.
,
Ahmed
,
K.
,
Nemat-Alla
,
M.
,
Ahmed
,
M.
, and
El-Sebaie
,
M.
,
2018
, “
Performance Study of Solid Oxide Fuel Cell With Various Flow Field Designs: Numerical Study
,”
Int. J. Hydrogen Energy
,
43
(
45
), p.
20931
.
20.
Qu
,
Z.
,
Aravind
,
P. V.
, and
Boksteen
,
S. Z.
,
2011
, “
Three-Dimensional Computational Fluid Dynamics Modeling of Anode-Supported Planar SOFC
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10209
10220
.
21.
Kong
,
W.
,
Li
,
J. Y.
,
Liu
,
S. X.
, and
Lin
,
Z. J.
,
2012
, “
The Influence of Interconnect Ribs on the Performance of Planar Solid Oxide Fuel Cell and Formulae for Optimal Rib Sizes
,”
J. Power Sources
,
204
, pp.
106
115
.
22.
Kong
,
W.
,
Gao
,
X.
,
Liu
,
S. X.
,
Su
,
S. C.
, and
Chen
,
D. F.
,
2014
, “
Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell
,”
Energies
,
7
(
1
), pp.
295
313
.
23.
Kornely
,
M.
,
Leonide
,
A.
,
Weber
,
A.
, and
Ivers-Tiffée
,
E.
,
2011
, “
Performance Limiting Factors in Anode-Supported Cells Originating From Metallic Interconnector Design
,”
J. Power Sources
,
196
(
17
), pp.
7209
7216
.
24.
Blum
,
L.
,
Meulenberg
,
W. A.
,
Nabielek
,
H.
, and
Steinberger-Wilckens
,
R.
,
2005
, “
Worldwide SOFC Technology Overview and Benchmark
,”
Int. J. Appl. Ceram. Technol.
,
2
(
6
), pp.
482
492
.
25.
Koshiyama
,
T.
,
Nakajima
,
H.
,
Karimata
,
T.
,
Kitahara
,
T.
,
Ito
,
K.
,
Masuda
,
S.
,
Ogura
,
Y.
, and
Shimano
,
J.
,
2015
, “
Direct Current Distribution Measurement of an Electrolyte­Supported Planar Solid Oxide Fuel Cell Under the Rib and Channel by Segmented Electrodes
,”
Electrochem. Soc. ECS Trans.
,
68
(
1
), pp.
2217
2226
.
26.
Weber
,
A.
, and
Geisler
,
H.
,
2019
, “
FEM Model-Based Design Optimization of a Planar SOFC Interconnector Flowfield
,”
Electrochem. Soc. ECS Trans.
,
91
(
1
), pp.
2233
2240
.
27.
Tseng
,
C. J.
,
Heush
,
Y. J.
, and
Chiang
,
C. J.
,
2016
, “
Application of Metal Foams to High Temperature PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
41
(
36
), pp.
16196
16204
.
28.
Dong
,
K. S.
,
Jin
,
H. Y.
, and
Dong
,
G. K.
,
2017
, “
Effect of Cell Size in Metal Foam Inserted to the Air Channel of Polymer Electrolyte Membrane Fuel Cell for High Performance
,”
Renewable Energy
,
115
, pp.
663
675
.
29.
Jo
,
A.
, and
Ju
,
H.
,
2018
, “
Numerical Study on Applicability of Metal Foam as Flow Distributor in Polymer Electrolyte Fuel Cells (PEFCs)
,”
Int. J. Hydrogen Energy
,
43
(
30
), pp.
14012
14026
.
30.
Toghyani
,
S.
,
Afshari
,
E.
, and
Baniasadi
,
E.
,
2018
, “
Metal Foams as Flow Distributors in Comparison With Serpentine and Parallel Flow Fields in Proton Exchange Membrane Electrolyzer Cells
,”
Electrochim. Acta
,
290
, pp.
506
519
.
31.
Tan
,
W. C.
,
Saw
,
L. H.
, and
Thiam
,
H. S.
,
2018
, “
Overview of Porous Media/Metal Foam Application in Fuel Cells and Solar Power Systems
,”
Renewable Sustainable Energy Rev.
,
96
, pp.
181
197
.
32.
Li
,
T. S.
,
Xu
,
C.
,
Chen
,
T.
,
Miao
,
H.
, and
Wang
,
W. G.
,
2011
, “
Chlorine Contaminants Poisoning of Solid Oxide Fuel Cells
,”
J. Solid State Electrochem.
,
15
(
6
), pp.
1077
1085
.
33.
Li
,
Y.
,
Yan
,
H.
, and
Zhou
,
Z.
,
2019
, “
Three-Dimensional Nonisothermal Modeling of Solid Oxide Fuel Cell Coupling Electrochemical Kinetics and Species Transport
,”
Int. J. Energy Res.
,
43
(
13
), pp.
6907
6921
.
34.
Shen
,
Q.
,
Li
,
S.
, and
Yang
,
G.
,
2019
, “
Analysis of Heat and Mass Transport Characteristics in Anode-Supported Solid Oxide Fuel Cells at Various Operating Conditions
,”
Numer. Heat Transfer, Part A
,
75
(
8
), pp.
509
522
.
35.
Park
,
J. M.
,
Kim
,
D. Y.
, and
Baek
,
J. D.
,
2018
, “
Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics Inside a SOFC Unit Cell
,”
Energies
,
11
(
3
), p.
473
.
36.
Sciacovelli
,
A.
, and
Verda
,
V.
,
2009
, “
Entropy Generation Analysis in a Monolithic-Type Solid Oxide Fuel Cell (SOFC)
,”
Energy
,
34
(
7
), pp.
850
865
.
37.
Khazaee
,
I.
, and
Rava
,
A.
,
2017
, “
Numerical Simulation of the Performance of Solid Oxide Fuel Cell With Different Flow Channel Geometries
,”
Energy
,
119
, pp.
235
244
.
38.
Patcharavorachot
,
Y.
,
Arpornwichanop
,
A.
, and
Chuachuensuk
,
A.
,
2008
, “
Electrochemical Study of a Planar Solid Oxide Fuel Cell: Role of Support Structures
,”
J. Power Sources
,
177
(
2
), pp.
254
261
.
39.
Lee
,
S.
,
Kim
,
H.
, and
Yoon
,
K. J.
,
2016
, “
The Effect of Fuel Utilization on Heat and Mass Transfer Within Solid Oxide Fuel Cells Examined by Three-Dimensional Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
97
, pp.
77
93
.
You do not currently have access to this content.