Abstract

The heat pump system employed with a dual evaporator for battery cooling coupled with cabin comfort is an innovative thermal management method. It can be inferred that the refrigerant thermal load distribution can trigger temperature fluctuations for the thermal performance of both battery and cabin. To tradeoff between the thermal management demands of battery and cabin, this study proposed a strategy to promote the decreasing of battery temperature and to ensure battery thermal uniformity with a higher priority. Hence, a transient refrigerant flowrate distribution scheme with a minimum flowrate to satisfy battery thermal demands was researched. According to the proposed method, this study investigated three cases of electric vehicle (EV) acceleration conditions with different driving speed levels. The results indicated that, with the proposed method, the battery module average temperature can be lower than 303 K with a 4–8 K maximum temperature difference. Additionally, the cabin air-supply average temperature would range from 285 K to 287 K, the virtual thermal manikin face and leg temperature range from 296 K to 302 K, and the cabin rear zone temperature ranges from 296 K to 298 K for three acceleration driving conditions. To evaluate the EV cabin thermal comfort, the predicted mean vote (PMV) index was introduced by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHARE). It also provides evidence that with the proposed method, the thermal comfort in the EV cabin can satisfy the ASHARE proposed value range of ±0.5. The results showed a significant reduction in the temperature fluctuations for cabin thermal comfort and battery thermal management thermal controlling. It offers a satisfactory reference for the refrigerant thermal load distribution strategy applied with the heat pump system connected to the battery and cabin by the dual evaporator.

References

1.
Wang
,
Y.
,
Gao
,
Q.
,
Zhang
,
T.
,
Wang
,
G.
,
Jiang
,
Z.
, and
Li
,
Y.
,
2017
, “
Advances in Integrated Vehicle Thermal Management and Numerical Simulation
,”
Energies
,
10
(
10
), p.
1636
.
2.
Shelly
,
T. J.
,
Weibel
,
J. A.
,
Ziviani
,
D.
, and
Groll
,
E. A.
,
2021
, “
Comparative Analysis of Battery Electric Vehicle Thermal Management Systems Under Long-Range Drive Cycles
,”
Appl. Therm. Eng.
,
198
(
5
), p.
117506
.
3.
Yuan
,
R.
,
Fletcher
,
T.
,
Ahmedov
,
A.
,
Kalantzis
,
N.
,
Pezouvanis
,
A.
,
Dutta
,
N.
, and
Ebrahimi
,
K.
,
2020
, “
Modelling and Co-Simulation of Hybrid Vehicles: A Thermal Management Perspective
,”
Appl. Therm. Eng.
,
180
(
5
), p.
115883
.
4.
Guo
,
J.
, and
Jiang
,
F.
,
2021
, “
A Novel Electric Vehicle Thermal Management System Based on Cooling and Heating of Batteries by Refrigerant
,”
Energy Convers. Manage.
,
237
(
1
), p.
114145
.
5.
Cen
,
J.
, and
Jiang
,
F.
,
2020
, “
Li-Ion Power Battery Temperature Control by a Battery Thermal Management and Vehicle Cabin Air Conditioning Integrated System
,”
Energy Sustainable Dev.
,
57
, pp.
141
148
.
6.
Hu
,
Q.
,
Amini
,
M. R.
,
Kolmanovsky
,
I.
,
Sun
,
J.
,
Wiese
,
A.
, and
Seeds
,
J. B.
,
2021
, “
Multihorizon Model Predictive Control: An Application to Integrated Power and Thermal Management of Connected Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
30
(
3
), pp.
1052
1064
.
7.
Wang
,
Y.
,
Gao
,
Q.
,
Wang
,
G.
,
Lu
,
P.
,
Zhao
,
M.
, and
Bao
,
W.
,
2018
, “
A Review on Research Status and Key Technologies of Battery Thermal Management and Its Enhanced Safety
,”
Int. J. Energy Res.
,
42
(
13
), pp.
4008
4033
.
8.
Liang
,
K.
,
Wang
,
M.
,
Gao
,
C.
,
Dong
,
B.
,
Feng
,
C.
,
Zhou
,
X.
, and
Liu
,
J.
,
2021
, “
Advances and Challenges of Integrated Thermal Management Technologies for Pure Electric Vehicles
,”
Sustainable Energy Technol. Assess.
,
46
(
1
), p.
101319
.
9.
Hutchins
,
B.
,
Wicksteed
,
B.
, and
Muhammad
,
F.
,
2015
,
Hybrid Electric Vehicle Cooling Circuit and Method of Cooling
: U.S. Patent No. 9199531.
10.
Ning
,
P.
,
Liang
,
Z.
, and
Wang
,
F.
,
2014
, “
Power Module and Cooling System Thermal Performance Evaluation for HEV Application
,”
IEEE Trans. Emerg. Sel. Topics Power Electron.
,
2
(
3
), pp.
487
495
.
11.
Thomas J.
,
G.
,
Satish
,
K.
, and
Michael
,
N.
,
2013
,
Battery system and method for cooling the battery system
, U.S. Patent. NO. US20130255293: A1.
12.
Flahaut
,
W. S.
,
Huber
,
N.
,
Einoegg
,
M. F.
,
Siering
,
S.
, and
Ring
,
A.
,
2016
,
Battery System and Battery Module
, U.S. Patent. No. US20160233565:A1.
13.
Xian
,
H.
,
Dong
,
D.
, and
Jian
,
S.
,
2019
, “
Experimental Research on an 8 kW Direct Cooling Unit for Power Battery Used in a Vehicle
,”
Int. J. Refrig.
,
40
(
2
), pp.
20
27
. 1DOI 0.3969/j.issn.0253-4339.2019.02.020
14.
Hong
,
S. H.
,
Jang
,
D. S.
,
Park
,
S.
,
Yun
,
S.
, and
Kim
,
Y.
,
2020
, “
Thermal Performance of Direct Two-Phase Refrigerant Cooling for Lithium-Ion Batteries in Electric Vehicles
,”
Appl. Therm. Eng.
,
173
(
5
), p.
115213
.
15.
Wang
,
Y.
,
Gao
,
Q.
, and
Wang
,
H.
,
2021
, “
Structural Design and Its Thermal Management Performance for Battery Modules Based on Refrigerant Cooling Method
,”
Int. J. Energy Res.
,
45
(
3
), pp.
3821
3837
.
16.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
Heat and Mass Transfer Modeling and Assessment of a New Battery Cooling System
,”
Int. J. Heat Mass Transfer
,
126
(
A
), pp.
765
778
.
17.
Wei
,
L.
,
Jia
,
L.
,
An
,
Z.
, and
Dang
,
C.
,
2020
, “
Experimental Study on Thermal Management of Cylindrical Li-Ion Battery With Flexible Microchannel Plates
,”
J. Therm. Sci.
,
29
(
4
), pp.
1001
1009
.
18.
Senthilraja
,
S.
,
Ravichandran
,
P.
, and
Gangadevi
,
R.
,
2021
, “
Influence of Temperature and Volume Fraction on the Thermophysical Properties of CuO-R134a Nano Refrigerant and its Application in Battery Thermal Management System
,”
Proc. Inst. Mech. Eng. E: J. Process Mech. Eng.
,
235
(
3
), pp.
660
669
.
19.
Raj
,
M. A. F.
, and
Sekhar
,
S. J.
,
2019
, “
Investigation of Energy and Exergy Performance on a Small-Scale Refrigeration System With PCMs Inserted Between Coil and Wall of the Evaporator Cabin
,”
J. Therm. Anal. Calorim.
,
136
(
1
), pp.
355
365
.
20.
Guo
,
J.
, and
Jiang
,
F.
,
2021
, “
A Novel Electric Vehicle Thermal Management System Based on Cooling and Heating of Batteries by Refrigerant
,”
Energy Convers. Manage.
,
237
(
1
), p.
114145
.
21.
Shen
,
M.
, and
Gao
,
Q.
,
2020
, “
System Simulation on Refrigerant-Based Battery Thermal Management Technology for Electric Vehicles
,”
Energy Convers. Manage.
,
203
(
1
), p.
112176
.
22.
Hamut
,
S.
,
2015
, “
Exergy Analysis of Electric Vehicle Battery Thermal Management Systems Using Transcritical CO2 Vapour Compression Cycle
,”
Int. J. Exergy
,
18
(
2
), pp.
214
233
.
23.
Congzhe
,
Z.
,
Fang
,
Y.
, and
Hang
,
G.
,
2019
, “
System Simulation of Pure Electric Vehicle Thermal Management With a Refrigerant Cooling Battery Under Summer Conditions
,”
Int. J. Refrig.
,
40
(
2
), pp.
12
19
.
24.
Zhang
,
K.
,
Li
,
M.
,
Yang
,
C.
,
Shao
,
Z.
, and
Wang
,
L.
,
2020
, “
Exergy Analysis of Electric Vehicle Heat Pump Air Conditioning System With Battery Thermal Management System
,”
J. Therm. Sci.
,
29
(
2
), pp.
408
422
.
25.
Gao
,
Q.
,
Shen
,
M.
, and
Wang
,
Y.
,
2021
, “System Simulation on the Refrigerant-Based Lithium-Ion Battery Thermal Management Technology,”
Advances in Heat Transfer and Thermal Engineering
,
C.
Wen
, and
Y.
Yan
, eds.,
Springer
,
Singapore
, pp.
549
552
.
26.
Han
,
B.
,
Liu
,
F.
,
Li
,
M.
,
Guo
,
J.
, and
Xu
,
Y.
,
2021
, “
Research on Electric Vehicle Thermal Management System With Coupled Temperature Regulation Between Crew Cabin and Power Battery Pack
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
235
(
10–11
), pp.
2740
2752
.
27.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101155
.
28.
Cheung
,
T.
,
Schiavon
,
S.
,
Parkinson
,
T.
,
Li
,
P.
, and
Brager
,
G.
,
2019
, “
Analysis of the Accuracy on PMV–PPD Model Using the ASHRAE Global Thermal Comfort Database II
,”
Build. Environ.
,
153
(
15
), pp.
205
217
.
29.
Shen
,
M.
, and
Gao
,
Q.
,
2020
, “
Structure Design and Effect Analysis on Refrigerant Cooling Enhancement of Battery Thermal Management System for Electric Vehicles
,”
J. Energy Storage
,
32
, p.
101940
.
30.
Liu
,
Y.
, and
Zhang
,
J.
,
2021
, “
Electric Vehicle Battery Thermal and Cabin Climate Management Based on Model Predictive Control
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031705
.
31.
Guo
,
J.
, and
Jiang
,
F.
,
2021
, “
A Novel Electric Vehicle Thermal Management System Based on Cooling and Heating of Batteries by Refrigerant
,”
Energy Convers. Manage.
,
237
(
1
), p.
114145
.
32.
Huanhuan
,
L.
,
Yuqiang
,
Z.
, and
Xiaoyu
,
W.
,
2021
, “
The Influence of Entropy Heat Coefficient Simplification on the Accuracy of Thermal Model of LIBs
,”
J. Chongqing Univ. Technol. (Nat. Sci.)
,
35
(
5
), pp.
1
12
.
33.
Mohammed
,
H. I.
,
Giddings
,
D.
, and
Walker
,
G. S.
,
2018
, “
CFD Simulation of a Concentrated Salt Nanofluid Flow Boiling in a Rectangular Tube
,”
Int. J. Heat Mass Transfer
,
125
, pp.
218
228
.
34.
Li
,
S.
, and
Ju
,
Y.
,
2022
, “
Numerical Study on the Condensation Characteristics of Various Refrigerants Outside a Horizontal Plain Tube at Low Temperatures
,”
Int. J. Therm. Sci.
,
176
, p.
107508
.
35.
Devahdhanush
,
V. S.
,
Lei
,
Y.
,
Chen
,
Z.
, and
Mudawar
,
I.
,
2021
, “
Assessing Advantages and Disadvantages of Macro- and Micro-Channel Flow Boiling for High-Heat-Flux Thermal Management Using Computational and Theoretical/Empirical Methods
,”
Int. J. Heat Mass Transfer
,
169
, p.
120787
.
36.
Shen
,
Q.
,
Su
,
D.
,
Su
,
S.
,
Zhang
,
N.
, and
Jin
,
T.
,
2017
, “
Development of Heat and Mass Transfer Model for Condensation
,”
Int. Commun. Heat Mass Transfer
,
84
, pp.
35
40
.
37.
Liu
,
H.
,
Lian
,
Z.
,
Gong
,
Z.
,
Wang
,
Y.
, and
Yu
,
G.
,
2018
, “
Thermal Comfort, Vibration, and Noise in Chinese Ship Cabin Environment in Winter Time
,”
Build. Environ.
,
135
(
1
), pp.
104
111
.
38.
Zhang
,
S.
,
He
,
W.
,
Chen
,
D.
,
Chu
,
J.
,
Fan
,
H.
, and
Duan
,
X.
,
2019
, “
Thermal Comfort Analysis Based on PMV/PPD in Cabins of Manned Submersibles
,”
Build. Environ.
,
148
(
15
), pp.
668
676
.
39.
Oh
,
J.
,
Choi
,
K.
,
Son
,
G. H.
,
Park
,
Y. J.
,
Kang
,
Y. S.
, and
Kim
,
Y. J.
,
2020
, “
Flow Analysis Inside Tractor Cabin for Determining air Conditioner Vent Location
,”
Comput. Electron. Agric.
,
169
, p.
105199
.
You do not currently have access to this content.