Abstract

It is of great significance to develop efficient and robust oxygen evolution reaction (OER) electrocatalysts based on inexpensive and earth-abundant materials to enable water splitting as a future renewable energy source. Herein, the in situ grown CoMn-MOF-74 on nickel foam and their use as active electrodes for high-performance water-oxidation catalysis are reported. In alkaline media, the binder-free three-dimensional (3D) electrode shows superior OER activity with a current density of 10 mA cm−2 at a small overpotential of 260 mV, a Tafel slope of 58.2 mV dec−1, as well as excellent stability, making it one of the most active OER catalyst. Such high performance is attributed to increased electrochemically active areas, accelerated electron transport capability and the synergy between metal–organic framework (MOFs) and Ni substrate. This work elucidates a promising electrode for electrochemical water oxidation and enriches the direct application of MOF materials for future clean energy conversion and storage systems.

References

1.
Wang
,
J.
,
Xu
,
F.
,
Jin
,
H. Y.
,
Chen
,
Y. Q.
, and
Wang
,
Y.
,
2017
, “
Non-noble Metal-Based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications
,”
Adv. Mater.
,
29
(
14
), p.
1605838
.
2.
Yu
,
L.
,
Wu
,
H. B.
, and
Luo
,
X. W.
,
2017
, “
Self-templated Formation of Hollow Structures for Electrochemical Energy Applications
,”
Acc. Chem. Res.
,
50
(
2
), pp.
293
301
.
3.
Han
,
L.
,
Dong
,
S. J.
, and
Wang
,
E. K.
,
2016
, “
Transition-METAL (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction
,”
Adv. Mater.
,
28
(
42
), pp.
9266
9291
.
4.
Milazzo
,
R. G.
,
Privitera
,
S. M. S.
,
Scalese
,
S.
,
Monforte
,
F.
,
Bongiorno
,
C.
,
Condorelli
,
G. G.
, and
Lombardo
,
S. A.
,
2020
, “
Ultralow Loading Electroless Deposition of IrOx on Nickel Foam for Efficient and Stable Water Oxidation Catalysis
,”
Int. J. Hydrogen Energy
,
45
(
51
), pp.
26583
26594
.
5.
Zhang
,
Y.
,
Zhang
,
H. J.
,
Yang
,
J.
,
Bai
,
Y. J.
,
Qiu
,
H. J.
, and
Wang
,
Y.
,
2016
, “
Unique Sandwiched Carbon Sheets@Ni–Mn Nanoparticles for Enhanced Oxygen Evolution Reaction
,”
ACS Appl. Mater. Interfaces
,
8
(
18
), pp.
11396
11402
.
6.
Zhao
,
Q.
,
Yan
,
Z. H.
,
Chen
,
C. C.
, and
Chen
,
J.
,
2017
, “
Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond
,”
Chem. Rev.
,
117
(
15
), pp.
10121
10211
.
7.
Shang
,
H. S.
,
Sun
,
W. M.
,
Sui
,
R.
,
Pei
,
J. J.
,
Zheng
,
L. R.
,
Dong
,
J. C.
,
Jiang
,
Z. L.
, et al
,
2020
, “
Engineering Isolated Mn–N2C2 Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction
,”
Nano Lett.
,
20
(
7
), pp.
5443
5450
.
8.
Feng
,
L.-L.
,
Yu
,
G. T.
,
Wu
,
Y. Y.
,
Li
,
G.-D.
,
Li
,
H.
,
Sun
,
Y. H.
,
Asefa
,
T.
,
Chen
,
W.
, and
Zou
,
X. X.
,
2015
, “
High-index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting
,”
J. Am. Chem. Soc.
,
137
(
44
), pp.
14023
14026
.
9.
Jaramillo
,
T. F.
,
Jørgensen
,
K. P.
,
Bonde
,
J.
,
Nielsen
,
J. H.
,
Horch
,
S.
, and
Chorkendorff
,
I.
,
2007
, “
Identification of Active Edge Sites for Electrochemical H2 Evolution From MoS2 Nanocatalysts
,”
Science
,
317
(
5834
), pp.
100
102
.
10.
Weng
,
B. C.
,
Wei
,
W.
,
Yiliguma
,
W.
,
Wu
,
H.
,
Alenizi
,
A. M.
, and
Zheng
,
G.
,
2016
, “
Bifunctional CoP and CoN Porous Nanocatalysts Derived From ZIF-67 In Situ Grown on Nanowire Photoelectrodes for Efficient Photoelectrochemical Water Splitting and CO2 Reduction
,”
J. Mater. Chem. A
,
4
(
40
), pp.
15353
15360
.
11.
Ma
,
T. Y.
,
Dai
,
S.
,
Jaroniec
,
M.
, and
Qiao
,
S. Z.
,
2014
, “
Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Three-Dimensional Porous Composites as High-Performance Oxygen Evolution Electrocatalysts
,”
Angew. Chem., Int. Ed.
,
53
(
28
), pp.
7281
7285
.
12.
Wu
,
H. B.
,
Xia
,
B. Y.
,
Yu
,
L.
,
Yu
,
X.-Y.
, and
Lou
,
X. W.
,
2015
, “
Porous Molybdenum Carbide Nano-octahedrons Synthesized Via Confined Carburization in Metal–Organic Frameworks for Efficient Hydrogen Production
,”
Nat. Commun.
,
6
(
1
), p.
6512
.
13.
Xia
,
B. Y.
,
Yan
,
Y.
,
Li
,
N.
,
Wu
,
H. B.
,
Lou
,
X. W.
, and
Wang
,
X.
,
2016
, “
A Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalyst
,”
Nat. Energy
,
1
(
1
), p.
15006
.
14.
Luo
,
J. S.
,
Im
,
J.-H.
,
Mayer
,
M. T.
,
Schreier
,
M.
,
Nazeeruddin
,
M. K.
,
Park
,
N.-G.
,
Tilley
,
S. D.
,
Fan
,
H. J.
, and
Grätzel
,
M.
,
2014
, “
Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-Abundant Catalysts
,”
Science
,
345
(
6204
), pp.
1593
1596
.
15.
Zhang
,
P. L.
,
Li
,
L.
,
Nordlund
,
D.
,
Chen
,
H.
,
Fan
,
L. Z.
,
Zhang
,
B. B.
,
Sheng
,
X.
,
Daniel
,
Q.
, and
Sun
,
L. C.
,
2018
, “
Dendritic Core-Shell Nickel-Iron-Copper Metal/Metal Oxide Electrode for Efficient Electrocatalytic Water Oxidation
,”
Nat. Commun.
,
9
(
1
), p.
381
.
16.
Xu
,
X.
,
Song
,
F.
, and
Hu
,
X. L.
,
2016
, “
A Nickel Iron Diselenide-Derived Efficient Oxygen-Evolution Catalyst
,”
Nat. Commun.
,
7
(
1
), p.
12324
.
17.
Swesi
,
A. T.
,
Masud
,
J.
, and
Nath
,
M.
,
2016
, “
Nickel Selenide as a High-Efficiency Catalyst for Oxygen Evolution Reaction
,”
Energy Environ. Sci.
,
9
(
5
), pp.
1771
1782
.
18.
Pan
,
Y.
,
Sun
,
K. A.
,
Liu
,
S. J.
,
Cao
,
X.
,
Wu
,
K. L.
,
Cheong
,
W.-C.
,
Chen
,
Z.
, et al
,
2018
, “
Core-shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting
,”
J. Am. Chem. Soc.
,
140
(
7
), pp.
2610
2618
.
19.
Wu
,
R.
,
Xiao
,
B.
,
Gao
,
Q.
,
Zheng
,
Y.-R.
,
Zheng
,
X.-S.
,
Zhu
,
J.-F.
,
Gao
,
M.-R.
, and
Yu
,
S.-H.
,
2018
, “
A Janus Nickel Cobalt Phosphide Catalyst for High-Efficiency Neutral-pH Water Splitting
,”
Angew. Chem., Int. Ed.
,
57
(
47
), pp.
15445
15449
.
20.
Tang
,
C.
,
Cheng
,
N. Y.
,
Pu
,
Z. H.
,
Xing
,
W.
, and
Sun
,
X. P.
,
2015
, “
NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting
,”
Angew. Chem., Int. Ed.
,
127
(
32
), pp.
9483
9487
.
21.
Wang
,
X.
,
Yu
,
L.
,
Guan
,
B. Y.
,
Song
,
S. Y.
, and
Luo
,
X. W.
,
2018
, “
Metal–Organic Framework Hybrid-Assisted Formation of Co3O4/Co-Fe Oxide Double-Shelled Nanoboxes for Enhanced Oxygen Evolution
,”
Adv. Mater.
,
30
(
29
), p.
1801211
.
22.
Xu
,
H. J.
,
Shan
,
C. F.
,
Wu
,
X. X.
,
Sun
,
M. Z.
,
Huang
,
B. L.
,
Tang
,
Y.
, and
Yan
,
C.-H.
,
2020
, “
Fabrication of Layered Double Hydroxide Microcapsules Mediated by Cerium Doping Metal-Organic Framework for Boosting Water Splitting
,”
Energy Environ. Sci.
,
13
(
9
), pp.
2949
2956
.
23.
Andronescu
,
C.
,
Barwe
,
S.
,
Ventosa
,
E.
,
Masa
,
J.
,
Vasile
,
E.
,
Konkena
,
B.
,
Möller
,
S.
, and
Schuhmann
,
W.
,
2017
, “
Powder Catalyst Fixation for Post-electrolysis Structural Characterization of NiFe Layered Double Hydroxide Based Oxygen Evolution Reaction Electrocatalysts
,”
Angew. Chem., Int. Ed.
,
56
(
37
), pp.
11258
11262
.
24.
Ma
,
T. Y.
,
Dai
,
S.
,
Jaroniec
,
M.
, and
Qiao
,
S. Z.
,
2014
, “
Metal-Organic Framework Derived Hybrid Co3O4-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes
,”
J. Am. Chem. Soc.
,
136
(
39
), pp.
13925
13931
.
25.
Raja
,
D. S.
,
Chuah
,
X.-F.
, and
Lu
,
S.-Y.
,
2018
, “
In Situ Grown Bimetallic MOF-Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting With Ultrastability at High Current Densities
,”
Adv Energy Mater.
,
8
(
23
), p.
1801065
.
26.
Zhou
,
H. Q.
,
Yu
,
F.
,
Sun
,
J. Y.
,
He
,
R.
,
Chen
,
S.
,
Chu
,
C.-W.
, and
Ren
,
Z. F.
,
2017
, “
Highly Active Catalyst Derived From a 3D Foam of Fe(PO3)2/Ni2P for Extremely Efficient Water Oxidation
,”
Proc. Natl. Acad. Sci. USA.
,
114
(
22
), pp.
5607
5611
.
27.
Liu
,
J. L.
,
Zhu
,
D. D.
,
Ling
,
T.
,
Vasileff
,
A.
, and
Qiao
,
S.-Z.
,
2017
, “
S-NiFe2O4 Ultra-small Nanoparticle Built Nanosheets for Efficient Water Splitting in Alkaline and Neutral pH
,”
Nano Energy
,
40
(
10
), pp.
264
273
.
28.
Li
,
L. B.
,
Lin
,
R.-B.
,
Krishna
,
R.
,
Li
,
H.
,
Xiang
,
S. C.
,
Wu
,
H.
,
Li
,
J. P.
,
Zhou
,
W.
, and
Chen
,
B. L.
,
2018
, “
Ethane/Ethylene Separation in a Metal–Organic Framework With Iron-Peroxo Sites
,”
Science
,
362
(
6413
), pp.
443
446
.
29.
Connolly
,
B. M.
,
Madden
,
D. G.
,
Wheatley
,
A. E. H.
, and
Fairen-Jimenez
,
D.
,
2020
, “
Shaping the Future of Fuel: Monolithic Metal–Organic Frameworks for High-Density Gas Storage
,”
J. Am. Chem. Soc.
,
142
(
19
), pp.
8541
8549
.
30.
Guo
,
X.-Y.
,
Zhao
,
F.
,
Liu
,
J.-J.
,
Liu
,
Z.-L.
, and
Wang
,
Y.-Q.
,
2017
, “
An Ultrastable Zinc(II)-Organic Framework as a Eecyclable Multi-responsive Luminescent Sensor for Cr(III), Cr(IV) and 4-Nitrophenol in the Aqueous Phase With High Selectivity and Sensitivity
,”
J. Mater. Chem. A
,
5
(
37
), pp.
20035
20043
.
31.
Horcajada
,
P.
,
Gref
,
R.
,
Baati
,
T.
,
Allan
,
P. K.
,
Maurin
,
G.
,
Couvreur
,
P.
,
Férey
,
G.
,
Morris
,
R. E.
, and
Serre
,
C.
,
2012
, “
Metal–Organic Frameworks in Biomedicine
,”
Chem. Rev.
,
112
(
2
), pp.
1232
1268
.
32.
Peng
,
Z.
,
Abbas
,
S. C.
,
Lv
,
J. Q.
,
Yang
,
R.
,
Wu
,
M. X.
, and
Wang
,
Y. B.
,
2019
, “
Mixed-Metal Organic Framework-Coated ZnO Nanowires Array for Efficient Photoelectrochemical Water Oxidation
,”
Int. J. Hydrogen. Energy.
,
44
(
5
), pp.
2446
2453
.
33.
Hong
,
W.
,
Kitta
,
M.
, and
Xu
,
Q.
,
2018
, “
Bimetallic MOF-Derived FeCo-P/C Nanocomposites as Efficient Catalysts for Oxygen Evolution Reaction
,”
Small Mathods
,
2
(
12
), p.
1800214
.
34.
Zhang
,
M. D.
,
Dai
,
Q. B.
,
Zheng
,
H. G.
,
Chen
,
M. D.
, and
Dai
,
L. M.
,
2018
, “
Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting
,”
Adv. Mater.
,
30
(
10
), p.
1705431
.
35.
Muthurasu
,
A.
,
Maruthapandian
,
V.
, and
Kim
,
H. Y.
,
2019
, “
Metal–Organic Framework Derived Co3O4/MoS2 Heterostructure for Efficient Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Hydrogen Evolution Reaction
,”
App. Catal. B Environ.
,
248
(
9
), pp.
202
210
.
36.
Mahmood
,
A.
,
Guo
,
W. H.
,
Tabassum
,
H.
, and
Zou
,
R. Q.
,
2016
, “
Metal–Organic Framework-Based Nanomaterials for Electrocatalysis
,”
Adv. Energy Mater.
,
6
(
17
), p.
1600423
.
37.
Sun
,
F. Z.
,
Wang
,
G.
,
Ding
,
Y. Q.
,
Wang
,
C.
,
Yuan
,
B. B.
, and
Lin
,
Y. Q.
,
2018
, “
NiFe-Based Metal–Organic Framework Nanosheets Directly Supported on Nickel Foam Acting as Robust Electrodes for Electrochemical Oxygen Evolution Reaction
,”
Adv. Energy Mater.
,
8
(
21
), p.
1800584
.
38.
Wang
,
Y. C.
,
Li
,
W. B.
,
Zhao
,
L.
, and
Xu
,
B. Q.
,
2016
, “
MOF-Derived Binary Mixed Metal/Metal Oxide@Carbon Nanoporous Materials and Their Novel Supercapacitive Performances
,”
Phys. Chem. Chem. Phys.
,
18
(
27
), pp.
17941
17948
.
39.
Kim
,
S. H.
,
Lee
,
Y. J.
,
Kim
,
D. H.
, and
Lee
,
Y. J.
,
2018
, “
Bimetallic Metal–Organic Frameworks as Efficient Cathode Catalysts for Li–O2 Batteries
,”
ACS Appl. Mater. Interface
,
10
(
1
), pp.
660
667
.
40.
Cho
,
H.-Y.
,
Yang
,
D.-A.
,
Kim
,
J.
,
Jeong
,
S.-Y.
, and
Ahn
,
W.-S.
,
2012
, “
CO2 Adsorption and Catalytic Application of Co-MOF-74 Synthesized by Microwave Heating
,”
Catal. Today
,
185
(
1
), pp.
35
40
.
41.
Wan
,
K.
,
Luo
,
J. S.
,
Zhou
,
C.
,
Zhang
,
T.
,
Arbiol
,
J.
,
Lu
,
X. H.
,
Mao
,
B.-W.
,
Zhang
,
X.
, and
Fransaer
,
J.
,
2019
, “
Hierarchical Porous Ni3S4 With Enriched High-Valence Ni Sites as a Robust Electrocatalyst for Efficient Oxygen Evolution Reaction
,”
Adv. Funct. Mater.
,
29
(
18
), p.
1900315
.
42.
Shi
,
X.
,
Wu
,
A. P.
,
Yan
,
H. J.
,
Zhang
,
L.
,
Tian
,
C. G.
,
Wang
,
L.
, and
Fu
,
H. G.
,
2018
, “
A “MOFs Plus MOFs” Strategy Toward Co–Mo2N Tubes for Efficient Electrocatalytic Overall Water Splitting
,”
J. Mater. Chem. A
,
6
(
41
), pp.
20100
20109
.
43.
Yilmaz
,
G.
,
Tan
,
C. F.
,
Lim
,
C.-F.
, and
Ho
,
G. W.
,
2019
, “
Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs Into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photo-electrochemical Water Splitting
,”
Adv. Energy Mater.
,
9
(
1
), p.
1802983
.
44.
Ji
,
L. L.
,
Wang
,
J. Y.
,
Teng
,
X.
,
Meyer
,
T. J.
, and
Chen
,
Z. F.
,
2020
, “
CoP Nanoframes as Bifunctional Electrocatalysts for Efficient Overall Water Splitting
,”
ACS Catal.
,
10
(
1
), pp.
412
419
.
45.
Tian
,
J. Y.
,
Jiang
,
F. L.
,
Yuan
,
D. Q.
,
Zhang
,
L. J.
,
Chen
,
Q. H.
, and
Hong
,
M. C.
,
2020
, “
Electric-Field Assisted In Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) Into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution
,”
Angew. Chem. Int. Ed.
,
59
(
31
), pp.
13101
13108
.
46.
Li
,
D.-J.
,
Li
,
Q.-H.
,
Gu
,
Z.-G.
, and
Zhang
,
J.
,
2019
, “
A Surface-Mounted MOF Thin Film With Oriented Nanosheet Arrays for Enhancing the Oxygen Evolution Reaction
,”
J. Mater. Chem. A
,
7
(
31
), pp.
18519
18528
.
47.
Liang
,
Q. R.
,
Jin
,
H. H.
,
Wang
,
Z.
,
Xiong
,
Y. L.
,
Yuan
,
S.
,
Zeng
,
X. C.
,
He
,
D. P.
, and
Mu
,
S. C.
,
2019
, “
Metal–Organic Frameworks Derived Reverse-Encapsulation Co-NC@Mo2C Complex for Efficient Overall Water Splitting
,”
Nano Energy
,
57
(
3
), pp.
746
752
.
48.
Hai
,
G. T.
,
Jia
,
X. L.
,
Zhang
,
K. Y.
,
Liu
,
X.
,
Wu
,
Z. Y.
, and
Wang
,
G.
,
2018
, “
High-Performance Oxygen Evolution Catalyst Using Two-Dimensional Ultrathin Metal–Organic Frameworks Nanosheets
,”
Nano Energy
,
44
(
2
), pp.
345
352
.
49.
Wang
,
H.
,
Feng
,
E.-M.
,
Liu
,
Y.-M.
, and
Zhang
,
C.-Y.
,
2019
, “
High-Performance Hierarchical Ultrathin Sheet-Based CoOOH Hollow Nanospheres With Rich Oxygen Vacancies for the Oxygen Evolution Reaction
,”
J. Mater. Chem. A
,
7
(
13
), pp.
7777
7783
.
50.
Zhao
,
C.-X.
,
Li
,
B.-Q.
,
Zhao
,
M.
,
Liu
,
J.-N.
,
Zhao
,
L.-D.
,
Chen
,
X.
, and
Zhang
,
Q.
,
2020
, “
Precise Anionic Regulation of NiFe Hydroxysulfide Assisted by Electrochemical Reactions for Efficient Electrocatalysis
,”
Energy Environ. Sci.
,
13
(
6
), pp.
1711
1716
.
51.
Chai
,
L. L.
,
Hu
,
Z. Y.
,
Wang
,
X.
,
Xu
,
Y. W.
,
Zhang
,
L. J.
,
Li
,
T.-T.
,
Hu
,
Y.
,
Qian
,
J. J.
, and
Huang
,
S. M.
,
2020
, “
Stringing Bimetallic Metal–Organic Framework-Derived Cobalt Phosphide Composite for High-Efficiency Overall Water Splitting
,”
Adv. Sci.
,
7
(
5
), p.
1903195
.
52.
Xu
,
J.
,
Zhu
,
X.
, and
Jia
,
X. L.
,
2019
, “
From Low- to High-Crystallinity Bimetal–Organic Framework Nanosheet With Highly Exposed Boundaries: An Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction
,”
ACS Sustainable Chem. Eng.
,
7
(
19
), pp.
16629
16639
.
53.
Li
,
W. X.
,
Fang
,
W.
,
Wu
,
C.
,
Dinh
,
K. N.
,
Ren
,
H.
,
Zhao
,
L.
,
Liu
,
C. T.
, and
Yan
,
Q. Y.
,
2020
, “
Bimetal-MOF Nanosheets as Efficient Bifunctional Electrocatalysts for Oxygen Evolution and Nitrogen Reduction Reaction
,”
J. Mater. Chem. A
,
8
(
7
), pp.
3658
3666
.
54.
Lu
,
M. T.
,
Li
,
Y. W.
,
He
,
P. P.
,
Cong
,
J. K.
,
Chen
,
D. N.
,
Wang
,
J. W.
,
Wu
,
Y. H.
,
Xu
,
H.
,
Gao
,
J. K.
, and
Yao
,
J. M.
,
2019
, “
Bimetallic Metal–Organic Framework Nanosheets as Efficient Electrocatalysts for Oxygen Evolution Reaction
,”
J. Solid State Chem.
,
272
(
4
), pp.
32
37
.
55.
Yu
,
L.
,
Zhou
,
H. Q.
,
Sun
,
J. Y.
,
Qin
,
F.
,
Yu
,
F.
,
Bao
,
J. M.
,
Yu
,
Y.
,
Chen
,
S.
, and
Ren
,
Z. F.
,
2017
, “
Cu Nanowires Shelled With NiFe Layered Double Hydroxide Nanosheets as Bifunctional Electrocatalysts for Overall Water Splitting
,”
Energy Environ. Sci.
,
10
(
8
), pp.
1820
1827
.
You do not currently have access to this content.