Abstract

Porous metallic materials are widely used for lithium-ion battery (LIB) electrodes because of their low density, efficient ionic/electron pathways, and high specific surface area. In this study, we fabricate nanoporous Cu using chemical and electrochemical dealloying methods based on a Cu-Ga alloy. The effects of the dealloying conditions on the derived microstructure of the nanoporous metal and its evolution mechanisms are discussed. Analysis and control of the electrochemical dealloying process reveal that the sample morphology can be adjusted and the phase component can be controlled. Accordingly, a 3D CuGa2 electrode with a nanoporous structure is controllably synthesized, and it exhibits a higher specific capacity and cyclic stability than a 2D CuGa2 electrode when used as a LIB anode.

References

1.
Zhang
,
M.
,
Xiang
,
L.
,
Galluzzi
,
M.
,
Jiang
,
C.
,
Zhang
,
S.
,
Li
,
J.
, and
Tang
,
Y.
,
2019
, “
Uniform Distribution of Alloying/Dealloying Stress for High Structural Stability of an Al Anode in High-Areal-Density Lithium-Ion Batteries
,”
Adv. Mater.
,
31
(
18
), p.
1900826
.
2.
Dong
,
X.
,
Liu
,
W.
,
Chen
,
X.
,
Yan
,
J.
,
Li
,
N.
,
Shi
,
S.
,
Zhang
,
S.
, and
Yang
,
X.
,
2018
, “
Novel Three Dimensional Hierarchical Porous Sn-Ni Alloys as Anode for Lithium Ion Batteries With Long Cycle Life by Pulse Electrodeposition
,”
Chem. Eng. J.
,
350
(
15
), pp.
791
798
.
3.
Zhang
,
S.
,
Xing
,
Y.
,
Jiang
,
T.
,
Du
,
Z.
,
Li
,
F.
,
He
,
L.
, and
Liu
,
W.
,
2011
, “
A Three-Dimensional Tin-Coated Nanoporous Copper for Lithium-Ion Battery Anodes
,”
J. Power Sources
,
196
(
16
), pp.
6915
6919
.
4.
Sang
,
Q.
,
Hao
,
S.
,
Han
,
J.
, and
Ding
,
Y.
,
2022
, “
Dealloyed Nanoporous Materials for Electrochemical Energy Conversion and Storage
,”
EnergyChem
,
4
(
1
), p.
100069
.
5.
Li
,
S.
,
Wang
,
J.
,
Lin
,
X.
,
Xie
,
G.
,
Huang
,
Y.
,
Liu
,
X.
, and
Qiu
,
H. J.
,
2021
, “
Flexible Solid-State Direct Ethanol Fuel Cell Catalyzed by Nanoporous High-Entropy Al-Pd-Ni-Cu-Mo Anode and Spinel (AlMnCo)(3)O-4 Cathode
,”
Adv. Funct. Mater.
,
31
(
5
), p.
2007129
.
6.
Ge
,
W.
,
Encinas
,
A.
,
Ruiz
,
M. F.
,
Araujo
,
E.
, and
Song
,
S. X.
,
2020
, “
Facile Fabrication of Nanoporous Nickel With Rational Pore Structure Decorated With Ultrathin Ni(OH)2 Nanosheets as Advanced Supercapacitor Electrodes
,”
Scr. Mater.
,
178
(
15
), pp.
155
160
.
7.
McCormick
,
W.
, and
McCrudden
,
D.
,
2020
, “
Development of a Highly Nanoporous Platinum Screen-Printed Electrode and Its Application in Glucose Sensing
,”
J. Electroanal. Chem.
,
860
(
1
), p.
113912
.
8.
Yao
,
L. J.
,
Li
,
Y. X.
,
Ran
,
Y.
,
Yang
,
Y.
,
Zhao
,
R. J.
,
Su
,
L. F.
,
Kong
,
Y. L.
,
Ma
,
D.
,
Chen
,
Y. H.
, and
Wang
,
Y. D.
,
2020
, “
Construction of Novel Pd-SnO2 Composite Nanoporous Structure as a High-Response Sensor for Methane Gas
,”
J. Alloys Compd.
,
826
(
15
), p.
154063
.
9.
Zhao
,
D. Y.
,
Yu
,
G. L.
,
Tian
,
K. L.
, and
Xu
,
C. X.
,
2016
, “
A Highly Sensitive and Stable Electrochemical Sensor for Simultaneous Detection Towards Ascorbic Acid, Dopamine, and Uric Acid Based on the Hierarchical Nanoporous PtTi Alloy
,”
Biosens. Bioelectron.
,
82
(
18
), pp.
119
126
.
10.
Li
,
C. L.
,
Iqbal
,
M.
,
Lin
,
J. J.
,
Luo
,
X. L.
,
Jiang
,
B.
,
Malgras
,
V.
,
Wu
,
K. C. W.
,
Kim
,
J.
, and
Yamauchi
,
Y.
,
2018
, “
Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures
,”
Acc. Chem. Res.
,
51
(
8
), pp.
1764
1773
.
11.
Yang
,
H.
,
Zhao
,
J.
,
Qiu
,
M.
,
Sun
,
P.
,
Han
,
D.
,
Niu
,
L.
, and
Cui
,
G.
,
2019
, “
Hierarchical Bi-Continuous Pt Decorated Nanoporous Au-Sn Alloy on Carbon Fiber Paper for Ascorbic Acid, Dopamine and Uric Acid Simultaneous Sensing
,”
Biosens. Bioelectron.
,
124–125
(
15
), pp.
191
198
.
12.
Xing
,
Y. L.
,
Fang
,
B. Z.
,
Bonakdarpour
,
A.
,
Zhang
,
S. C.
, and
Wilkinson
,
D. P.
,
2014
, “
Facile Fabrication of Mesoporous Carbon Nanofibers With Unique Hierarchical Nanoarchitecture for Electrochemical Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
39
(
15
), pp.
7859
7867
.
13.
Xie
,
H.
,
Wang
,
T. Y.
,
Liang
,
J. S.
,
Li
,
Q.
, and
Sun
,
S. H.
,
2018
, “
Cu-Based Nanocatalysts for Electrochemical Reduction of CO2
,”
Nano Today
,
21
(
2
), pp.
41
54
.
14.
Sang
,
Q.
,
Yin
,
S.
,
Liu
,
F.
,
Yin
,
H.
,
He
,
J.
, and
Ding
,
Y.
,
2021
, “
Highly Coordinated Pd Overlayers on Nanoporous Gold for Efficient Formic Acid Electro-Oxidation
,”
Nano Res.
,
14
(
10
), pp.
3502
3508
.
15.
Wang
,
X.
,
Luo
,
M.
,
Lan
,
J.
,
Peng
,
M.
, and
Tan
,
Y.
,
2021
, “
Nanoporous Intermetallic Pd3Bi for Efficient Electrochemical Nitrogen Reduction
,”
Adv. Mater.
,
33
(
18
), p.
2007733
.
16.
Li
,
M.
,
Wang
,
H.
,
Li
,
X.
,
Zhang
,
S.
,
Han
,
J.
,
Masters
,
A. F.
,
Maschmeyer
,
T.
, and
Liu
,
X.
,
2018
, “
Organosilica Nanotube Templates: One-Pot Synthesis of Carbon-Modified Polymeric Carbon Nitride Nanorods for Photocatalysis
,”
ChemCatChem
,
10
(
3
), pp.
581
589
.
17.
Lührs
,
L.
, and
Weissmüller
,
J.
,
2018
, “
Nanoporous Copper-Nickel—Macroscopic Bodies of a Strong and Deformable Nanoporous Base Metal by Dealloying
,”
Scr. Mater.
,
155
(
10
), pp.
119
123
.
18.
Liu
,
W. B.
,
Zhang
,
S. C.
,
Li
,
N.
,
Zheng
,
J. W.
, and
Xing
,
Y. L.
,
2011
, “
A Facile One-Pot Route to Fabricate Nanoporous Copper With Controlled Hierarchical Pore Size Distributions Through Chemical Dealloying of Al–Cu Alloy in an Alkaline Solution
,”
Microporous Mesoporous Mater.
,
138
(
1–3
), pp.
1
7
.
19.
Pugh
,
D. V.
,
Dursun
,
A.
, and
Corcoran
,
S. G.
,
2005
, “
Electrochemical and Morphological Characterization of Pt–Cu Dealloying
,”
J. Electrochem. Soc.
,
152
(
11
), pp.
B455
B459
.
20.
Oezaslan
,
M.
,
Heggen
,
M.
, and
Strasser
,
P.
,
2012
, “
Size-Dependent Morphology of Dealloyed Bimetallic Catalysts: Linking the Nano to the Macro Scale
,”
J. Am. Chem. Soc.
,
134
(
1
), pp.
514
524
.
21.
Mani
,
P.
,
Srivastava
,
R.
, and
Strasser
,
P.
,
2011
, “
Dealloyed Binary PtM3 (M = Cu, Co, Ni) and Ternary PtNi3M (M = Cu, Co, Fe, Cr) Electrocatalysts for the Oxygen Reduction Reaction: Performance in Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
196
(
2
), pp.
666
673
.
22.
Wang
,
J.
,
Liu
,
X. J.
,
Li
,
R.
,
Li
,
Z. B.
,
Wang
,
X. Z.
,
Wang
,
H.
,
Wu
,
Y.
,
Jiang
,
S. H.
, and
Lu
,
Z. P.
,
2020
, “
Formation Mechanism and Characterization of Immiscible Nanoporous Binary Cu-Ag Alloys With Excellent Surface-Enhanced Raman Scattering Performance by Chemical Dealloying of Glassy Precursors
,”
Inorg.Chem. Front.
,
7
(
5
), pp.
1127
1139
.
23.
Yun
,
Q. B.
,
He
,
Y. B.
,
Lv
,
W.
,
Zhao
,
Y.
,
Li
,
B. H.
,
Kang
,
F. Y.
, and
Yang
,
Q. H.
,
2016
, “
Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
,”
Adv. Mater.
,
28
(
32
), pp.
6932
6939
.
24.
Zhao
,
H.
,
Lei
,
D.
,
He
,
Y.-B.
,
Yuan
,
Y.
,
Yun
,
Q.
,
Ni
,
B.
,
Lv
,
W.
, et al
,
2018
, “
Compact 3D Copper With Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite-Free Lithium Metal Anode Current Collector
,”
Adv. Energy Mater.
,
8
(
19
), p.
1800266
.
25.
Vivegnis
,
S.
,
Krid
,
M.
,
Delhalle
,
J.
,
Mekhalif
,
Z.
, and
Renner
,
F. U.
,
2019
, “
Use of Pyrophosphate and Boric Acid Additives in the Copper-Zinc Alloy Electrodeposition and Chemical Dealloying
,”
J. Electroanal. Chem.
,
848
(
9
), p.
113310
.
26.
Wang
,
X. G.
,
Zhang
,
Z. H.
,
Ji
,
H.
,
Xu
,
J. L.
,
Huang
,
X. B.
, and
Ma
,
Y.
,
2012
, “
Dealloying of Single-Phase Al2Au to Nanoporous Gold Ribbon/Film With Tunable Morphology in Inorganic and Organic Acidic Media
,”
Appl. Surf. Sci.
,
258
(
22
), pp.
9073
9079
.
27.
Liu
,
S.
,
Feng
,
J.
,
Bian
,
X.
,
Liu
,
J.
, and
Xu
,
H.
,
2016
, “
The Morphology-Controlled Synthesis of a Nanoporous-Antimony Anode for High-Performance Sodium-Ion Batteries
,”
Energy Environ. Sci.
,
9
(
4
), pp.
1229
1236
.
28.
Wada
,
T.
,
Yubuta
,
K.
,
Inoue
,
A.
, and
Kato
,
H.
,
2011
, “
Dealloying by Metallic Melt
,”
Mater. Lett.
,
65
(
7
), pp.
1076
1078
.
29.
Markvicka
,
E. J.
,
Bartlett
,
M. D.
,
Huang
,
X.
, and
Majidi
,
C.
,
2018
, “
An Autonomously Electrically Self-Healing Liquid Metal-Elastomer Composite for Robust Soft-Matter Robotics and Electronics
,”
Nat. Mater.
,
17
(
7
), pp.
618
624
.
30.
Sun
,
X.
,
Wang
,
X.
,
Yuan
,
B.
, and
Liu
,
J.
,
2020
, “
Liquid Metal–Enabled Cybernetic Electronics
,”
Mater. Today Phys.
,
14
(
8
), p.
100245
.
31.
Ma
,
Z.
,
Huang
,
Q.
,
Xu
,
Q.
,
Zhuang
,
Q.
,
Zhao
,
X.
,
Yang
,
Y.
,
Qiu
,
H.
, et al
,
2021
, “
Permeable Superelastic Liquid-Metal Fibre Mat Enables Biocompatible and Monolithic Stretchable Electronics
,”
Nat. Mater.
,
20
(
6
), pp.
859
868
.
32.
Wang
,
Z.
,
Wang
,
Y.
,
Gao
,
H.
,
Niu
,
J.
,
Zhang
,
J.
,
Peng
,
Z.
, and
Zhang
,
Z.
,
2018
, “
‘Painting’ Nanostructured Metals—Playing With Liquid Metal
,”
Nanoscale Horiz.
,
3
(
4
), pp.
408
416
.
33.
Ma
,
J.
,
Dong
,
H.
, and
He
,
Z.
,
2018
, “
Electrochemically Enabled Manipulation of Gallium-Based Liquid Metals Within Porous Copper
,”
Mater. Horiz.
,
5
(
4
), pp.
675
682
.
34.
Aburada
,
T.
,
Fitz-Gerald
,
J. M.
, and
Scully
,
J. R.
,
2011
, “
Synthesis of Nanoporous Copper by Dealloying of Al-Cu-Mg Amorphous Alloys in Acidic Solution: The Effect of Nickel
,”
Corros. Sci.
,
53
(
5
), pp.
1627
1632
.
35.
Erlebacher
,
J.
,
Aziz
,
M. J.
,
Karma
,
A.
,
Dimitrov
,
N.
, and
Sieradzki
,
K.
,
2001
, “
Evolution of Nanoporosity in Dealloying
,”
Nature
,
410
(
6827
), pp.
450
453
.
36.
Qian
,
L. H.
, and
Chen
,
M. W.
,
2007
, “
Ultrafine Nanoporous Gold by Low-Temperature Dealloying and Kinetics of Nanopore Formation
,”
Appl. Phys. Lett.
,
91
(
8
), p.
597
.
37.
Luo
,
X.
,
Li
,
R.
,
Huang
,
L.
, and
Zhang
,
T.
,
2013
, “
Nucleation and Growth of Nanoporous Copper Ligaments During Electrochemical Dealloying of Mg-Based Metallic Glasses
,”
Corros. Sci.
,
67
(
2
), pp.
100
108
.
38.
Qiu
,
H. J.
,
Peng
,
L.
,
Li
,
X.
,
Xu
,
H. T.
, and
Wang
,
Y.
,
2015
, “
Using Corrosion to Fabricate Various Nanoporous Metal Structures
,”
Corros. Sci.
,
92
(
5
), pp.
16
31
.
39.
Zhang
,
C.
,
Sun
,
J.
,
Xu
,
J.
,
Wang
,
X.
,
Ji
,
H.
,
Zhao
,
C.
, and
Zhang
,
Z.
,
2012
, “
Formation and Microstructure of Nanoporous Silver by Dealloying Rapidly Solidified Zn–Ag Alloys
,”
Electrochim. Acta
,
63
(
2
), pp.
302
311
.
40.
Zhang
,
Q.
,
Wang
,
X.
,
Qi
,
Z.
,
Wang
,
Y.
, and
Zhang
,
Z.
,
2009
, “
A Benign Route to Fabricate Nanoporous Gold Through Electrochemical Dealloying of Al–Au Alloys in a Neutral Solution
,”
Electrochim. Acta
,
54
(
26
), pp.
6190
6198
.
41.
Tyson
,
W. R.
, and
Millerc
,
W. A.
,
1977
, “
Surface Free Energies of Solid Metals: Estimation From Liquid Surface Tension Measurements
,”
Surf. Sci.
,
62
(
1
), pp.
267
276
.
42.
Hakamada
,
M.
, and
Mabuchi
,
M.
,
2013
, “
Fabrication, Microstructure, and Properties of Nanoporous Pd, Ni, and Their Alloys by Dealloying
,”
Crit. Rev. Solid State Mater. Sci.
,
38
(
4
), pp.
262
285
.
43.
Mokhtari
,
M.
,
Wada
,
T.
,
Bourlot
,
C. L.
,
Rumeau
,
J. D.
,
Kato
,
H.
,
Maire
,
E.
, and
Mary
,
N.
,
2020
, “
Corrosion Resistance of Porous Ferritic Stainless Steel Produced by Liquid Metal Dealloying of Incoloy 800
,”
Corros. Sci.
,
166
(
9
), p.
108468
.
44.
Chen-Wiegart
,
Y. C. K.
,
Wang
,
S.
,
McNulty
,
I.
, and
Dunand
,
D. C.
,
2013
, “
Effect of Ag-Au Composition and Acid Concentration on Dealloying Front Velocity and Cracking During Nanoporous Gold Formation
,”
Acta Mater.
,
61
(
15
), pp.
5561
5570
.
45.
Gu
,
Y.
,
Dong
,
C.
,
Zhong
,
M.
,
Ma
,
M.
,
Li
,
L.
, and
Liu
,
W.
,
2011
, “
Fabrication of Nanoporous Manganese by Laser Cladding and Selective Electrochemical de-Alloying
,”
Appl. Surf. Sci.
,
257
(
8
), pp.
3211
3215
.
46.
Xu
,
C. X.
,
Su
,
J. X.
,
Xu
,
X. H.
,
Liu
,
P. P.
,
Zhao
,
H. J.
,
Tian
,
F.
, and
Ding
,
Y.
,
2007
, “
Low Temperature CO Oxidation Over Unsupported Nanoporous Gold
,”
J. Am. Chem. Soc.
,
129
(
1
), pp.
42
43
.
47.
Xu
,
J.
,
Wang
,
Y.
, and
Zhang
,
Z.
,
2012
, “
Potential and Concentration Dependent Electrochemical Dealloying of Al2Au in Sodium Chloride Solutions
,”
J. Phys. Chem. C
,
116
(
9
), pp.
5689
5699
.
48.
Newman
,
R. C.
, and
Sieradzki
,
K.
,
1994
, “
Metallic Corrosion
,”
Science
,
263
(
5154
), pp.
1708
1709
.
49.
Zhang
,
J.
,
Li
,
Y.
, and
Zhang
,
Q.
,
2020
, “
Synthesis of Uniform Crack-Free Nanoporous Gold by Dealloying of Au-Cu Alloy Prepared Using Permanent Magnetic Stirring
,”
Mater. Lett.
,
263
(
5
), p.
127226
.
50.
Wu
,
Y.
,
Huang
,
L.
,
Huang
,
X.
,
Guo
,
X.
,
Liu
,
D.
,
Zheng
,
D.
,
Zhang
,
X.
,
Ren
,
R.
,
Qu
,
D.
, and
Chen
,
J.
,
2017
, “
A Room-Temperature Liquid Metal-Based Self-Healing Anode for Lithium-Ion Batteries With an Ultra-Long Cycle Life
,”
Energy Environ. Sci.
,
10
(
8
), pp.
1854
1861
.
You do not currently have access to this content.