Abstract

High-temperature polymer membrane fuel cells (HT-PEMFCs) are considered the trend of PEMFC future development due to their accelerated electrochemical reaction kinetics, simplified water/thermal management, and improved tolerance to impurities (CO). As the core part of the membrane electrode assembly in HT-PEMFCs, the catalyst layer significantly affects the cost, performance, and lifetime of HT-PEMFCs. However, platinum (Pt) catalyst degradation and carbon corrosion are apparently accelerated because of the high-temperature and acid environment in HT-PEMFC. Moreover, the loss of phosphoric acid (PA) that serves as the proton conductor is observed after long-term operation. In addition, the adsorption of phosphate on the Pt surface leads to poor Pt utilization. Thus, high cost and fast performance decay must be addressed to achieve better commercialization of HT-PEMFC. Optimizing the composition and structure of the catalyst layer is demonstrated as an effective strategy to resolve these problems. In this review, we first summarize the latest progress in the optimization of the catalyst layer composition for HT-PEMFC, including catalysts, binders, electrolytes (PAs), and additives. Thereafter, the structural characteristics of the catalyst layer are introduced, and the optimization strategies are reviewed. Finally, the current challenges and research perspectives of the catalyst layer in HT-PEMFC are discussed.

References

1.
Staffell
,
I.
,
Scamman
,
D.
,
Velazquez Abad
,
A.
,
Balcombe
,
P.
,
Dodds
,
P. E.
,
Ekins
,
P.
,
Shah
,
N.
, and
Ward
,
K. R.
,
2019
, “
The Role of Hydrogen and Fuel Cells in the Global Energy System
,”
Energy Environ. Sci.
,
12
(
2
), pp.
463
491
.
2.
Gu
,
Y.
,
Liu
,
Y.
, and
Cao
,
X.
,
2017
, “
Evolving Strategies for Tumor Immunotherapy: Enhancing the Enhancer and Suppressing the Suppressor
,”
Natl. Sci. Rev.
,
4
(
2
), pp.
161
163
.
3.
Hu
,
M.
,
2020
, “
The Current Status of Hydrogen and Fuel Cell Development in China
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
3
), p.
034001
.
4.
Authayanun
,
S.
,
Mamlouk
,
M.
,
Scott
,
K.
, and
Arpornwichanop
,
A.
,
2013
, “
Comparison of High-Temperature and Low-Temperature Polymer Electrolyte Membrane Fuel Cell Systems With Glycerol Reforming Process for Stationary Applications
,”
Appl. Energy
,
109
, pp.
192
201
.
5.
Schmidt
,
T. J.
, and
Baurmeister
,
J.
,
2008
, “
Development Status of High Temperature PBI Based Membrane Electrode Assemblies
,”
Electrochem. Soc.
,
16
(
2
), pp.
263
270
.
6.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
7.
Mamlouk
,
M.
, and
Scott
,
K.
,
2010
, “
The Effect of Electrode Parameters on Performance of a Phosphoric Acid-Doped PBI Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
2
), pp.
784
793
.
8.
Liu
,
Z. X.
,
Qian
,
W.
,
J
,
G.
,
Zhang
,
W.
,
Wang
,
J.
,
and Mao
,
C.
, and
Q
,
Z.
,
2011
, “
Proton Exchange Membrane Fuel Cell Materials
,”
Prog. Chem.
,
23
(
Z1
), pp.
487
500
.
9.
Ravichandran
,
S.
,
Bhuvanendran
,
N.
,
Zhang
,
W.
,
Xu
,
Q.
,
Khotseng
,
L.
, and
Su
,
H.
,
2020
, “
Comprehensive Studies on the Effect of Reducing Agents on Electrocatalytic Activity and Durability of Platinum Supported on Carbon Support for Oxygen Reduction Reaction
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
3
), p.
031012
.
10.
Shen
,
S.
,
Ren
,
Z.
,
Xiang
,
S.
,
Chen
,
S.
,
Tan
,
Z.
,
Li
,
H.
, and
Zhang
,
J.
,
2022
, “
The Development of a Highly Durable Fe-N-C Electrocatalyst With Favorable Carbon Nanotube Structures for the Oxygen Reduction in PEMFCs
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
1
), p.
010905
.
11.
Wang
,
C.
,
Lin Chen
,
Z.
,
Wen Tao
,
A.
, and
Zhang
,
H.
,
2016
, “
Optimization of Pt-Ni Alloy Catalysts Synthesized by Potentiostatic Electrodeposition for Cathode in PEMFC
,”
ASME J. Electrochem. Energy Convers. Storage
,
13
(
2
), p.
021001
.
12.
Choi
,
S.-W.
,
Park
,
J.
,
Pak
,
C.
,
Choi
,
K.
,
Lee
,
J.-C.
, and
Chang
,
H.
,
2013
, “
Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(Benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell
,”
Polymers
,
5
(
1
), pp.
77
111
.
13.
Acharya
,
C. K.
,
Li
,
W.
,
Liu
,
Z.
,
Kwon
,
G.
,
Heath Turner
,
C.
,
Lane
,
A. M.
,
Nikles
,
D.
,
Klein
,
T.
, and
Weaver
,
M.
,
2009
, “
Effect of Boron Doping in the Carbon Support on Platinum Nanoparticles and Carbon Corrosion
,”
J. Power Sources
,
192
(
2
), pp.
324
329
.
14.
Borup
,
R. L.
,
Davey
,
J. R.
,
Garzon
,
F. H.
,
Wood
,
D. L.
, and
Inbody
,
M. A.
,
2006
, “
PEM Fuel Cell Electrocatalyst Durability Measurements
,”
J. Power Sources
,
163
(
1
), pp.
76
81
.
15.
Luo
,
F.
,
Pan
,
S.
, and
Yang
,
Z.
,
2021
, “
Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells
,”
Acta Phys. Chim. Sin.
,
37
(
9
), p.
2009087
.
16.
Li
,
W.
,
Wang
,
D.
,
Liu
,
T.
,
Tao
,
L.
,
Zhang
,
Y.
,
Huang
,
Y. C.
,
Du
,
S.
, et al
,
2021
, “
Doping-Modulated Strain Enhancing the Phosphate Tolerance on PtFe Alloys for High-Temperature Proton Exchange Membrane Fuel Cells
,”
Adv. Funct. Mater.
,
32
(
8
), p.
2109224
.
17.
Zagudaeva
,
N. M.
, and
Tarasevich
,
M. R.
,
2010
, “
Electrochemical Characteristics of Platinum-Based Binary Catalysts for Middle-Temperature Hydrogen-Air Fuel Cells With Phosphoric Acid Electrolyte
,”
J. Electrochem.
,
46
(
5
), pp.
530
536
.
18.
Mamlouk
,
M.
,
Jang
,
J. H.
, and
Scott
,
K.
,
2012
, “
Intermediate Temperature Fuel Cell and Oxygen Reduction Studies With Carbon-Supported Platinum Alloy Catalysts in Phosphoric Acid Based Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
1
), p.
011002
.
19.
Oettel
,
C.
,
Rihko-Struckmann
,
L.
, and
Sundmacher
,
K.
,
2012
, “
Improved CO Tolerance With PtRu Anode Catalysts in ABPBI Based High Temperature Proton Exchange Membrane Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
9
(
3
), p.
031009
.
20.
Lim
,
J.-E.
,
Leea
,
U. J.
, and
Ahn
,
S. H.
,
2014
, “
Oxygen Reduction Reaction on Electrodeposited PtAu Alloy Catalysts in the Presence of Phosphoric Acid
,”
Appl. Catal., B
,
165
, pp.
495
502
.
21.
Park
,
H.
,
Kim
,
D.-K.
,
Kim
,
H.
,
Oh
,
S.
,
Jung
,
W. S.
, and
Kim
,
S.-K.
,
2020
, “
Binder-Coated Electrodeposited PtNiCu Catalysts for the Oxygen Reduction Reaction in High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
Appl. Surf. Sci.
,
510
, p.
145444
.
22.
Luo
,
F.
,
Zhang
,
Q.
,
Yang
,
Z.
,
Guo
,
L.
,
Yu
,
X.
,
Qu
,
K.
,
Ling
,
Y.
,
Yang
,
J.
, and
Cai
,
W.
,
2018
, “
Fabrication of Stable and Well-Connected Proton Path in Catalyst Layer for High Temperature Polymer Electrolyte Fuel Cells
,”
ChemCatChem
,
10
(
22
), pp.
5314
5322
.
23.
Zhang
,
W.
,
Cao
,
Z.
,
Zhang
,
J.
,
Peng
,
K.
,
Ma
,
Q.
,
Xu
,
Q.
, and
Su
,
H.
,
2020
, “
Enhanced Durability of Pt-Based Electrocatalysts in High-Temperature Polymer Electrolyte Membrane Fuel Cells Using a Graphitic Carbon Nitride Nanosheet Support
,”
ACS Sustainable Chem. Eng.
,
8
(
24
), pp.
9195
9205
.
24.
Liu
,
G.
,
Zhang
,
H.
,
Zhai
,
Y.
,
Zhang
,
Y.
,
Xu
,
D.
, and
Shao
,
Z.-G.
,
2007
, “
Pt4ZrO2/C Cathode Catalyst for Improved Durability in High Temperature PEMFC Based on H3PO4 Doped PBI
,”
Electrochem. Commun.
,
9
(
1
), pp.
135
141
.
25.
Vellacheri
,
R.
,
Unni
,
S. M.
,
Nahire
,
S.
,
Kharul
,
U. K.
, and
Kurungot
,
S.
,
2010
, “
Pt-MoOx-Carbon Nanotube Redox Couple Based Electrocatalyst as a Potential Partner With Polybenzimidazole Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications
,”
Electrochim. Acta
,
55
(
8
), pp.
2878
2887
.
26.
Ji
,
Y.
,
Cho
,
Y. I.
,
Jeon
,
Y.
,
Lee
,
C.
,
Park
,
D.-H.
, and
Shul
,
Y.-G.
,
2017
, “
Design of Active Pt on TiO2 Based Nanofibrous Cathode for Superior PEMFC Performance and Durability at High Temperature
,”
Appl. Catal., B
,
204
, pp.
421
429
.
27.
Parrondo
,
J.
,
Mijangos
,
F.
, and
Rambabu
,
B.
,
2010
, “
Platinum/Tin Oxide/Carbon Cathode Catalyst for High Temperature PEM Fuel Cell
,”
J. Power Sources
,
195
(
13
), pp.
3977
3983
.
28.
Lobato
,
J.
,
Zamora
,
H.
,
Plaza
,
J.
,
Cañizares
,
P.
, and
Rodrigo
,
M. A.
,
2016
, “
Enhancement of High Temperature PEMFC Stability Using Catalysts Based on Pt Supported on SiC Based Materials
,”
Appl. Catal., B
,
198
, pp.
516
524
.
29.
Zamora
,
H.
,
Plaza
,
J.
,
Velhac
,
P.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
, and
Lobato
,
J.
,
2017
, “
SiCTiC as Catalyst Support for HT-PEMFCs. Influence of Ti Content
,”
Appl. Catal., B
,
207
, pp.
244
254
.
30.
Cheng
,
Y.
,
He
,
S.
,
Lu
,
S.
,
Veder
,
J.-P.
,
Johannessen
,
B.
,
Thomsen
,
L.
,
Saunders
,
M.
, et al
,
2019
, “
Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
Adv. Sci.
,
6
(
10
), p.
1802066
.
31.
Cheng
,
Y.
,
Zhang
,
J.
,
Wu
,
X.
,
Tang
,
C.
,
Yang
,
S.-Z.
,
Su
,
P.
,
Thomsen
,
L.
, et al
,
2021
, “
A Template-Free Method to Synthesis High Density Iron Single Atoms Anchored on Carbon Nanotubes for High Temperature Polymer Electrolyte Membrane Fuel Cells
,”
Nano Energy
,
80
, p.
10554
.
32.
Hu
,
Y.
,
Jensen
,
J. O.
, and
Zhang
,
W.
,
2015
, “
Fe3C-Based Oxygen Reduction Catalysts: Synthesis, Hollow Spherical Structures and Applications in Fuel Cells
,”
J. Mater. Chem. A
,
3
(
4
), pp.
1752
1760
.
33.
Hu
,
Y.
,
Jensen
,
J. O.
,
Pan
,
C.
,
Cleemann
,
L. N.
,
Shypunov
,
I.
, and
Li
,
Q.
,
2018
, “
Immunity of the Fe-N-C Catalysts to Electrolyte Adsorption: Phosphate But Not Perchloric Anions
,”
Appl. Catal., B
,
234
, pp.
357
364
.
34.
Liu
,
Z.
,
Wainright
,
J. S.
,
Litt
,
M. H.
, and
Savinell
,
R. F.
,
2006
, “
Study of the Oxygen Reduction Reaction (ORR) at Pt Interfaced With Phosphoric Acid Doped Polybenzimidazole at Elevated Temperature and Low Relative Humidity
,”
Electrochim. Acta
,
51
(
19
), pp.
3914
3923
.
35.
Jung
,
H.-S.
,
Kim
,
D.-H.
,
Chun
,
H.
, and
Pak
,
C.
,
2022
, “
Optimization of Fabrication Conditions for Low-Pt Anode Using Response Surface Methodology in High-Temperature Polymer Electrolyte Membrane Fuel Cell
,”
J. Ind. Eng. Chem.
,
109
, pp.
267
274
.
36.
Lobato
,
J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
, and
Pinar
,
F. J.
,
2010
, “
Study of the Influence of the Amount of PBI–H3PO4 in the Catalytic Layer of a High Temperature PEMFC
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1347
1355
.
37.
Lobato
,
J.
,
Cañizares
,
P.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
, and
Aguilar
,
J. A.
,
2007
, “
Improved Polybenzimidazole Films for H3PO4-Doped PBI-Based High Temperature PEMFC
,”
J. Membr. Sci.
,
306
(
1–2
), pp.
47
55
.
38.
Li
,
Q. F.
,
Rudbeck
,
H. C.
,
Chromik
,
A.
,
Jensen
,
J. O.
,
Pan
,
C.
,
Steenberg
,
T.
,
Calverley
,
M.
,
Bjerrum
,
N. J.
, and
Kerres
,
J.
,
2010
, “
Properties, Degradation and High Temperature Fuel Cell Test of Different Types of PBI and PBI Blend Membranes
,”
J. Membr. Sci.
,
347
(
1–2
), pp.
260
270
.
39.
Mazúr
,
P.
,
Soukup
,
J.
,
Paidar
,
M.
, and
Bouzek
,
K.
,
2011
, “
Gas Diffusion Electrodes for High Temperature PEM-Type Fuel Cells: Role of a Polymer Binder and Method of the Catalyst Layer Deposition
,”
J. Appl. Electrochem.
,
41
(
9
), pp.
1013
1019
.
40.
Park
,
J. O.
,
Kwon
,
K.
,
Cho
,
M. D.
,
Hong
,
S. G.
,
Kim
,
T. Y.
, and
Yoo
,
D. Y.
,
2011
, “
Role of Binders in High Temperature PEMFC Electrode
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
B675
B681
.
41.
Mamlouk
,
M.
, and
Scott
,
K.
,
2011
, “
Phosphoric Acid-Doped Electrodes for a PBI Polymer Membrane Fuel Cell
,”
Int. J. Energy Res.
,
35
(
6
), pp.
507
519
.
42.
Su
,
H.
,
Pasupathi
,
S.
,
Bladergroen
,
B.
,
Linkov
,
V.
, and
Pollet
,
B. G.
,
2013
, “
Optimization of Gas Diffusion Electrode for Polybenzimidazole-Based High Temperature Proton Exchange Membrane Fuel Cell: Evaluation of Polymer Binders in Catalyst Layer
,”
Int. J. Hydrogen Energy
,
38
(
26
), pp.
11370
11378
.
43.
Wannek
,
C.
,
Lehnert
,
W.
, and
Mergel
,
J.
,
2009
, “
Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Fuel Cells Based on Poly(2,5-Benzimidazole) Membranes With Phosphoric Acid Impregnation via the Catalyst Layers
,”
J. Power Sources
,
192
(
2
), pp.
258
266
.
44.
Oono
,
Y.
,
Fukuda
,
T.
,
Sounai
,
A.
, and
Hori
,
M.
,
2010
, “
Influence of Operating Temperature on Cell Performance and Endurance of High Temperature Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
195
(
4
), pp.
1007
1014
.
45.
Jang
,
J.
,
Kim
,
D.-H.
,
Ahn
,
M.-K.
,
Min
,
C.-M.
,
Lee
,
S.-B.
,
Byun
,
J.
,
Pak
,
C.
, and
Lee
,
J.-S.
,
2020
, “
Phosphoric Acid Doped Triazole-Containing Cross-Linked Polymer Electrolytes With Enhanced Stability for High-Temperature Proton Exchange Membrane Fuel Cells
,”
J. Membr. Sci.
,
595
, p.
117508
.
46.
Jang
,
J.
,
Kim
,
D.-H.
,
Min
,
C.-M.
,
Pak
,
C.
, and
Lee
,
J.-S.
,
2020
, “
Azole Structures Influence Fuel Cell Performance of Phosphoric Acid-Doped Poly(Phenylene Oxide) With Azoles on Side Chains
,”
J. Membr. Sci.
,
605
, p.
118096
.
47.
Jang
,
J.
,
Kim
,
D.-H.
,
Kang
,
B.
,
Lee
,
J.-H.
,
Pak
,
C.
, and
Lee
,
J.-S.
,
2021
, “
Impact of N-Substituent and pKa of Azole Rings on Fuel Cell Performance and Phosphoric Acid Loss
,”
ACS Appl. Mater. Interfaces
,
13
(
1
), pp.
531
540
.
48.
Kim
,
J.-H.
,
Kim
,
H.-J.
,
Lim
,
T.-H.
, and
Lee
,
H.-I.
,
2007
, “
Dependence of the Performance of a High-Temperature Polymer Electrolyte Fuel Cell on Phosphoric Acid-Doped Polybenzimidazole Ionomer Content in Cathode Catalyst Layer
,”
J. Power Sources
,
170
(
2
), pp.
275
280
.
49.
Lin
,
H.-L.
,
Wu
,
T.-J.
,
Lin
,
Y.-T.
, and
Wu
,
H.-C.
,
2015
, “
Effect of Polyvinylidene Difluoride in the Catalyst Layer on High-Temperature PEMFCs
,”
Int. J. Hydrogen Energy
,
40
(
30
), pp.
9400
9409
.
50.
Jeong
,
G.
,
Kim
,
M.
,
Han
,
J.
,
Kim
,
H.-J.
,
Shul
,
Y.-G.
, and
Cho
,
E.
,
2016
, “
High-Performance Membrane-Electrode Assembly With an Optimal Polytetrafluoroethylene Content for High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
323
, pp.
142
146
.
51.
Su
,
H.
,
Pasupathi
,
S.
,
Bladergroen
,
B. J.
,
Linkov
,
V.
, and
Pollet
,
B. G.
,
2013
, “
Enhanced Performance of Polybenzimidazole-Based High Temperature Proton Exchange Membrane Fuel Cell With Gas Diffusion Electrodes Prepared by Automatic Catalyst Spraying Under Irradiation Technique
,”
J. Power Sources
,
242
, pp.
510
519
.
52.
Kim
,
M.
,
Jeong
,
G.
,
Eom
,
K.
,
Cho
,
E.
,
Ryu
,
J.
,
Kim
,
H.-J.
, and
Kwon
,
H.
,
2013
, “
Effects of Heat Treatment Time on Electrochemical Properties and Electrode Structure of Polytetrafluoroethylene-Bonded Membrane Electrode Assemblies for Polybenzimidazole-Based High-Temperature Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
28
), pp.
12335
12342
.
53.
Kwon
,
K.
,
Park
,
J. O.
,
Yoo
,
D. Y.
, and
Yi
,
J. S.
,
2009
, “
Phosphoric Acid Distribution in the Membrane Electrode Assembly of High Temperature Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
54
(
26
), pp.
6570
6575
.
54.
Oono
,
Y.
,
Sounai
,
A.
, and
Hori
,
M.
,
2009
, “
Influence of the Phosphoric Acid-Doping Level in a Polybenzimidazole Membrane on the Cell Performance of High-Temperature Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
189
(
2
), pp.
943
949
.
55.
Zagoraiou
,
E.
,
Paloukis
,
F.
,
Neophytides
,
S. G.
, and
Daletou
,
M. K.
,
2020
, “
The Electrochemical Interface of the Cathode in High Temperature PEM Fuel Cells
,”
Electrochim. Acta
,
356
, p.
136778
.
56.
Eberhardt
,
S. H.
,
Toulec
,
M.
,
Marone
,
F.
,
Stampanoni
,
M.
,
Büchi
,
F. N.
, and
Schmidt
,
T. J.
,
2015
, “
Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)Distribution
,”
J. Electrochem. Soc.
,
162
(
3
), pp.
F310
F316
.
57.
Zhang
,
J.
,
Bai
,
H.
,
Yan
,
W.
,
Zhang
,
J.
,
Wang
,
H.
,
Xiang
,
Y.
, and
Lu
,
S.
,
2020
, “
Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers
,”
J. Electrochem. Soc.
,
167
(
11
), p.
114501
.
58.
Lee
,
E.
,
Kim
,
D.-H.
, and
Pak
,
C.
,
2020
, “
Effects of Cathode Catalyst Layer Fabrication Parameters on the Performance of High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
Appl. Surf. Sci.
,
510
, p.
14541
.
59.
Halter
,
J.
,
Gloor
,
T.
,
Amoroso
,
B.
,
Schmidt
,
T. J.
, and
Buchi
,
F. N.
,
2019
, “
Wetting Properties of Porous High Temperature Polymer Electrolyte Fuel Cells Materials With Phosphoric Acid
,”
Phys. Chem. Chem. Phys.
,
21
(
24
), pp.
13126
13134
.
60.
Zhang
,
J.
,
Zhang
,
J.
,
Wang
,
H.
,
Xiang
,
Y.
, and
Lu
,
S.
,
2021
, “
Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
Acta Phys. Chim. Sin.
,
37
(
9
), p.
2010071
.
61.
Jung
,
N.
,
Shin
,
H.
,
Kim
,
M.
,
Jang
,
I.
,
Kim
,
H.-J.
,
Jang
,
J. H.
,
Kim
,
H.
, and
Yoo
,
S. J.
,
2015
, “
Janus Pt Surfaces Derivatized With Zwitterionic Molecules for Oxygen Reduction Reactions in Alkaline and Acid Electrolytes
,”
Nano Energy
,
17
, pp.
152
159
.
62.
Mamlouk
,
M.
, and
Scott
,
K.
,
2011
, “
An Investigation of Pt Alloy Oxygen Reduction Catalysts in Phosphoric Acid Doped PBI Fuel Cells
,”
J. Power Sources
,
196
(
3
), pp.
1084
1089
.
63.
Najam
,
T.
,
Shah
,
S. S. A.
,
Ding
,
W.
, and
Wei
,
Z.
,
2019
, “
Role of P-Doping in Antipoisoning: Efficient MOF-Derived 3D Hierarchical Architectures for the Oxygen Reduction Reaction
,”
J. Phys. Chem. C
,
123
(
27
), pp.
16796
16803
.
64.
Wang
,
S. B.
,
Xie
,
X. F.
, and
Wang
,
Y. W.
,
2012
, “
Effects of Pore Formers on the Performance of Membrane Electrodes in High Temperature Proton Exchange Membrane Fuel Cells
,”
Prog. Chem. Ind.
,
31
(
S1
), pp.
343
346
.
65.
Kim
,
D.-H.
,
Jung
,
H.-S.
,
Chun
,
H.
, and
Pak
,
C.
,
2020
, “
Effect of Vinylphosphonic Acid and Polymer Binders With Phosphate Groups on Performance of High-Temperature Polymer Electrolyte Membrane Fuel Cell
,”
Catal. Today
,
358
, pp.
333
337
.
66.
Kim
,
D.-H.
,
Min
,
C.-M.
,
Lee
,
E.
,
Lee
,
J.-S.
, and
Pak
,
C.
,
2021
, “
Enhanced Membrane Electrode Assembly Performance by Adding PTFE/Carbon Black for High Temperature Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
46
(
57
), pp.
29424
29431
.
67.
Kil
,
K. C.
,
Hong
,
S.-G.
,
Park
,
J. O.
,
Pak
,
C.
,
Chang
,
H.
, and
Paik
,
U.
,
2014
, “
The Use of MWCNT to Enhance Oxygen Reduction Reaction and Adhesion Strength Between Catalyst Layer and gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
17481
17486
.
68.
Oh
,
H.-S.
,
Cho
,
Y.
,
Lee
,
W. H.
, and
Kim
,
H.
,
2013
, “
Modification of Electrodes Using Al2O3 to Reduce Phosphoric Acid Loss and Increase the Performance of High-Temperature Proton Exchange Membrane Fuel Cells
,”
J. Mater. Chem. A
,
1
(
7
), pp.
2578
2581
.
69.
Barron
,
O.
,
Su
,
H.
,
Linkov
,
V.
,
Pollet
,
B. G.
, and
Pasupathi
,
S.
,
2014
, “
CsHSO4 as Proton Conductor for High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
J. Appl. Electrochem.
,
44
(
9
), pp.
1037
1045
.
70.
Barron
,
O.
,
Su
,
H.
,
Linkov
,
V.
,
Pollet
,
B. G.
, and
Pasupathi
,
S.
,
2015
, “
Enhanced Performance and Stability of High Temperature Proton Exchange Membrane Fuel Cell by Incorporating Zirconium Hydrogen Phosphate in Catalyst Layer
,”
J. Power Sources
,
278
, pp.
718
724
.
71.
Tian
,
L.
,
Zhang
,
W.
,
Xie
,
Z.
,
Peng
,
K.
,
Ma
,
Q.
,
Xu
,
Q.
,
Pasupathi
,
S.
, and
Su
,
H.
,
2021
, “
Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework Into Catalyst Layer
,”
Acta Phys. Chim. Sin.
,
37
(
9
), p.
2009049
.
72.
Su
,
H.
,
Jao
,
T.-C.
,
Pasupathi
,
S.
,
Bladergroen
,
B. J.
,
Linkov
,
V.
, and
Pollet
,
B. G.
,
2014
, “
A Novel Dual Catalyst Layer Structured Gas Diffusion Electrode for Enhanced Performance of High Temperature Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
246
, pp.
63
67
.
73.
Zhang
,
W.
,
Yao
,
D.
,
Tian
,
L.
,
Xie
,
Z.
,
Ma
,
Q.
,
Xu
,
Q.
,
Pasupathi
,
S.
,
Xing
,
L.
, and
Su
,
H.
,
2021
, “
Enhanced Performance of High Temperature Polymer Electrolyte Membrane Fuel Cell Using a Novel Dual Catalyst Layer Structured Cathode
,”
J. Taiwan Inst. Chem. Eng.
,
125
, pp.
285
290
.
74.
Martin
,
S.
,
Li
,
Q.
,
Steenberg
,
T.
, and
Jensen
,
J. O.
,
2014
, “
Binderless Electrodes for High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
272
, pp.
559
566
.
75.
Su
,
H.
,
Xu
,
Q.
,
Chong
,
J.
,
Li
,
H.
,
Sita
,
C.
, and
Pasupathi
,
S.
,
2017
, “
Eliminating Micro-Porous Layer From Gas Diffusion Electrode for Use in High Temperature Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
341
, pp.
302
308
.
76.
Du
,
H.-Y.
,
Wang
,
C.-H.
,
Yang
,
C.-S.
,
Hsu
,
H.-C.
,
Chang
,
S.-T.
,
Huang
,
H.-C.
,
Lai
,
S.-W.
, et al
,
2014
, “
A High Performance Polybenzimidazole-CNT Hybrid Electrode for High-Temperature Proton Exchange Membrane Fuel Cells
,”
J. Mater. Chem. A
,
2
(
19
), pp.
7015
7019
.
77.
K. P
,
V. B.
,
Varghese
,
G.
,
Joseph
,
T. V.
, and
Chippar
,
P.
,
2022
, “
Optimization of Graded Catalyst Layer to Enhance Uniformity of Current Density and Performance of High Temperature-Polymer Electrolyte Membrane Fuel Cell
,”
Int. J. Hydrogen Energy
,
47
(
6
), pp.
4018
4032
.
You do not currently have access to this content.