Abstract

In many electrochemical processes, the transport of charged species is governed by the Nernst–Planck equation, which includes terms for both diffusion and electrochemical migration. In this work, a multi-physics, multi-species model based on the smoothed particle hydrodynamics (SPH) method is presented to model the Nernst–Planck equation in systems with electrodeposition. Electrodeposition occurs when ions are deposited onto an electrode. These deposits create complex boundary geometries, which can be challenging for numerical methods to resolve. SPH is a particularly effective numerical method for systems with moving and deforming boundaries due to its particle nature. This paper discusses the SPH implementation of the Nernst–Planck equations with electrodeposition and verifies the model with an analytical solution and a numerical integrator. A convergence study of migration and precipitation is presented to illustrate the model’s accuracy, along with comparisons of the deposition growth front to experimental results.

References

1.
Newman
,
J.
, and
Thomas-Alyea
,
K. E.
,
2012
,
Electrochemical Systems
, 3rd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
, pp.
1
672
.
2.
Randles
,
J. E. B.
,
1947
, “
Kinetics of Rapid Electrode Reactions
,”
Discuss. Faraday Soc.
,
1
, p.
11
.
3.
Voss
,
R. F.
, and
Tomkiewicz
,
M.
,
1985
, “
Computer Simulation of Dendritic Electrodeposition
,”
J. Electrochem. Soc.
,
132
(
2
), pp.
371
375
.
4.
Barchi
,
L.
,
Bardi
,
U.
,
Caporali
,
S.
,
Fantini
,
M.
,
Scrivani
,
A.
, and
Scrivani
,
A.
,
2010
, “
Electroplated Bright Aluminium Coatings for Anticorrosion and Decorative Purposes
,”
Prog. Org. Coat.
,
67
(
2
), pp.
146
151
.
5.
Hurley
,
F. H.
, and
WIer
,
T. P.
,
1951
, “
The Electrodeposition of Aluminum From Nonaqueous Solutions at Room Temperature
,”
J. Electrochem. Soc.
,
98
(
5
), p.
207
.
6.
Jiang
,
N.
,
You
,
B.
,
Sheng
,
M.
, and
Sun
,
Y.
,
2015
, “
Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting
,”
Angew. Chem.
,
127
(
21
), pp.
6349
6352
.
7.
Kim
,
H.
,
Subramanian
,
N. P.
, and
Popov
,
B. N.
,
2004
, “
Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition
,”
J. Power Sources
,
138
(
1–2
), pp.
14
24
.
8.
Frenck
,
L.
,
Sethi
,
G. K.
,
Maslyn
,
J. A.
, and
Balsara
,
N. P.
,
2019
, “
Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes
,”
Front. Energy Res.
,
7
, p.
115
.
9.
Wood
,
K. N.
,
Noked
,
M.
, and
Dasgupta
,
N. P.
,
2017
, “
Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
,”
ACS Energy Lett.
,
2
(
3
), pp.
664
672
.
10.
Wang
,
J.
,
Ge
,
B.
,
Li
,
H.
,
Yang
,
M.
,
Wang
,
J.
,
Liu
,
D.
,
Fernandez
,
C.
,
Chen
,
X.
, and
Peng
,
Q.
,
2021
, “
Challenges and Progresses of Lithium-Metal Batteries
,”
Chem. Eng. J.
,
420
(
1
), p.
129739
.
11.
Rosso
,
M.
,
Gobron
,
T.
,
Brissot
,
C.
,
Chazalviel
,
J. N.
, and
Lascaud
,
S.
,
2001
, “
Onset of Dendritic Growth in Lithium/Polymer Cells
,”
J. Power Sources
,
97–98
, pp.
804
806
.
12.
Avramović
,
L.
,
Ivanović
,
E. R.
,
Maksimović
,
V. M.
,
Pavlović
,
M. M.
,
Vuković
,
M.
,
Stevanović
,
J. S.
, and
Nikolić
,
N. D.
,
2018
, “
Correlation Between Crystal Structure and Morphology of Potentiostatically Electrodeposited Silver Dendritic Nanostructures
,”
Trans. Nonferrous Met. Soc. China (Engl. Ed.)
,
28
(
9
), pp.
1903
1912
.
13.
Zhang
,
X.
,
Yang
,
Y.
, and
Zhou
,
Z.
,
2020
, “
Towards Practical Lithium-Metal Anodes
,”
Chem. Soc. Rev.
,
49
(
10
), pp.
3040
3071
.
14.
Ryan
,
E. M.
, and
Mukherjee
,
P. P.
,
2019
, “
Mesoscale Modeling in Electrochemical Devices—A Critical Perspective
,”
Prog. Energy Combust. Sci.
,
71
, pp.
118
142
.
15.
Wang
,
A.
,
Kadam
,
S.
,
Li
,
H.
,
Shi
,
S.
, and
Qi
,
Y.
,
2018
, “
Review on Modeling of the Anode Solid Electrolyte Interphase (SEI) for Lithium-Ion Batteries
,”
Npj Comput. Mater.
,
4
(
1
), p.
15
.
16.
Moelans
,
N.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2008
, “
An Introduction to Phase-Field Modeling of Microstructure Evolution
,”
Calphad
,
32
(
2
), pp.
268
294
.
17.
Brissot
,
C.
,
Rosso
,
M.
,
Chazalviel
,
J. N.
, and
Lascaud
,
S.
,
1999
, “
Dendritic Growth Mechanisms in Lithium/Polymer Cells
,”
J. Power Sources
,
81
, pp.
925
929
.
18.
Chazalviel
,
J. N.
,
1990
, “
Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposition
,”
Phys. Rev. A
,
42
(
12
), pp.
7355
7367
.
19.
Guan
,
X.
,
Wang
,
A.
,
Liu
,
S.
,
Li
,
G.
,
Liang
,
F.
,
Yang
,
Y. W.
,
Liu
,
X.
, and
Luo
,
J.
,
2018
, “
Controlling Nucleation in Lithium Metal Anodes
,”
Small
,
14
(
37
), p.
1801423
.
20.
Jeon
,
J.
,
Yoon
,
G. H.
,
Vegge
,
T.
, and
Chang
,
J. H.
,
2022
, “
Phase-Field Investigation of Lithium Electrodeposition at Different Applied Overpotentials and Operating Temperatures
,”
ACS Appl. Mater. Interfaces
,
14
(
13
), pp.
15275
15286
.
21.
Jing
,
H.
,
Xing
,
H.
,
Dong
,
X.
, and
Han
,
Y.
,
2022
, “
Nonlinear Phase-Field Modeling of Lithium Dendritic Growth During Electrodeposition
,”
J. Electrochem. Soc.
,
169
(
3
), p.
32511
.
22.
Ren
,
Y.
,
Zhou
,
Y.
, and
Cao
,
Y.
,
2020
, “
Inhibit of Lithium Dendrite Growth in Solid Composite Electrolyte by Phase-Field Modeling
,”
J. Phys. Chem. C
,
124
(
23
), pp.
12195
12204
.
23.
Chen
,
C.-H.
, and
Pao
,
C.-W.
,
2021
, “
Phase-Field Study of Dendritic Morphology in Lithium Metal Batteries
,”
J. Power Sources
,
484
, p.
229203
.
24.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
8
), pp.
1703
1759
.
25.
Tartakovsky
,
A. M.
,
Meakin
,
P.
,
Scheibe
,
T. D.
,
Eichler West
,
R. M.
, and
West
,
R. M. E.
,
2007
, “
Simulations of Reactive Transport and Precipitation With Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
222
(
2
), pp.
654
672
.
26.
Tan
,
J.
, and
Ryan
,
E. M.
,
2016
, “
Computational Study of Electro-Convection Effects on Dendrite Growth in Batteries
,”
J. Power Sources
,
323
, pp.
67
77
.
27.
Tan
,
J.
, and
Ryan
,
E. M.
,
2013
, “
Numerical Modeling of Dendrite Growth in a Lithium air Battery System
,”
ECS Trans.
,
53
(
20
), pp.
35
43
.
28.
Tan
,
J.
,
Cannon
,
A.
, and
Ryan
,
E.
,
2020
, “
Simulating Dendrite Growth in Lithium Batteries Under Cycling Conditions
,”
J. Power Sources
,
463
, p.
228187
.
29.
Cannon
,
A.
, and
Ryan
,
E. M.
,
2021
, “
Characterizing the Microstructure of Separators in Lithium Batteries and Their Effects on Dendritic Growth
,”
ACS Appl. Energy Mater.
,
4
(
8
), pp.
7848
7861
.
30.
Nojabaee
,
M.
,
Küster
,
K.
,
Starke
,
U.
,
Popovic
,
J.
, and
Maier
,
J.
,
2020
, “
Solid Electrolyte Interphase Evolution on Lithium Metal in Contact With Glyme-Based Electrolytes
,”
Small
,
16
(
23
), pp.
1
5
.
31.
Yoon
,
I.
,
Jurng
,
S.
,
Abraham
,
D. P.
,
Lucht
,
B. L.
, and
Guduru
,
P. R.
,
2020
, “
Measurement of Mechanical and Fracture Properties of Solid Electrolyte Interphase on Lithium Metal Anodes in Lithium Ion Batteries
,”
Energy Storage Mater.
,
25
, pp.
296
304
.
32.
Schoenberg
,
I. J.
,
1988
, “Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions,”
Schoenberg Selected Papers
,
C.
de Boor
, ed.,
Birkhäuser
,
Boston, MA
, pp.
3
57
.
33.
Ryan
,
E. M.
,
Tartakovsky
,
A. M.
, and
Amon
,
C.
,
2010
, “
A Novel Method for Modeling Neumann and Robin Boundary Conditions in Smoothed Particle Hydrodynamics
,”
Comput. Phys. Commun.
,
181
(
12
), pp.
2008
2023
.
34.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.
35.
Schneider
,
N. M.
,
Park
,
J. H.
,
Grogan
,
J. M.
,
Steingart
,
D. A.
,
Bau
,
H. H.
, and
Ross
,
F. M.
,
2017
, “
Nanoscale Evolution of Interface Morphology During Electrodeposition
,”
Nat. Commun.
,
8
(
1
), pp.
1
10
.
36.
Khoo
,
E.
,
Zhao
,
H.
, and
Bazant
,
M. Z.
,
2019
, “
Linear Stability Analysis of Transient Electrodeposition in Charged Porous Media: Suppression of Dendritic Growth by Surface Conduction
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A2280
A2299
.
37.
Yang
,
H.
,
Fey
,
E. O.
,
Trimm
,
B. D.
,
Dimitrov
,
N.
, and
Whittingham
,
M. S.
,
2014
, “
Effects of Pulse Plating on Lithium Electrodeposition, Morphology and Cycling Efficiency
,”
J. Power Sources
,
272
, pp.
900
908
.
38.
Melsheimer
,
T.
,
Morey
,
M.
,
Cannon
,
A.
, and
Ryan
,
E. M.
,
2022
, “
Modeling the Effects of Pulse Plating on Dendrite Growth in Lithium Metal Batteries
,”
Electrochem. Acta
,
433
, p.
141227
.
39.
Morey
,
M.
,
Loftus
,
J.
,
Cannon
,
A.
, and
Ryan
,
E.
,
2021
, “
Interfacial Studies on the Effects of Patterned Anodes for Guided Lithium Deposition in Lithium Metal Batteries
,”
J. Chem. Phys.
,
156
(
1
), p.
14703
.
40.
Sharon
,
D.
,
Bennington
,
P.
,
Patel
,
S. N.
, and
Nealey
,
P. F.
,
2020
, “
Stabilizing Dendritic Electrodeposition by Limiting Spatial Dimensions in Nanostructured Electrolytes
,”
ACS Energy Lett.
,
5
(
9
), pp.
2889
2896
.
41.
Rajendran
,
S.
,
Tang
,
Z.
,
George
,
A.
,
Cannon
,
A.
,
Neumann
,
C.
,
Sawas
,
A.
,
Ryan
,
E.
,
Turchanin
,
A.
, and
Arava
,
L. M. R.
,
2021
, “
Inhibition of Lithium Dendrite Formation in Lithium Metal Batteries Via Regulated Cation Transport Through Ultrathin Sub-Nanometer Porous Carbon Nanomembranes
,”
Adv. Energy Mater.
,
11
(
29
), p.
2170114
.
42.
Li
,
C.
,
Liu
,
S.
,
Shi
,
C.
,
Liang
,
G.
,
Lu
,
Z.
,
Fu
,
R.
, and
Wu
,
D.
,
2019
, “
Two-Dimensional Molecular Brush-Functionalized Porous Bilayer Composite Separators Toward Ultrastable High-Current Density Lithium Metal Anodes
,”
Nat. Commun.
,
10
(
1
), p.
1363
.
43.
Gao
,
S.
,
Cannon
,
A.
,
Sun
,
F.
,
Pan
,
Y.
,
Yang
,
D.
,
Ge
,
S.
,
Liu
,
N.
, et al
,
2021
, “
Glass-Fiber-Reinforced Polymeric Film as an Efficient Protecting Layer for Stable Li Metal Electrodes
,”
Cell Rep. Phys. Sci.
,
2
(
8
), p.
100534
.
44.
Li
,
N.
,
Wei
,
W.
,
Xie
,
K.
,
Tan
,
J.
,
Zhang
,
L.
,
Luo
,
X.
,
Yuan
,
K.
, et al
,
2018
, “
Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries
,”
Nano Lett.
,
18
(
3
), pp.
2067
2073
.
45.
Pathak
,
R.
,
Chen
,
K.
,
Gurung
,
A.
,
Reza
,
K. M.
,
Bahrami
,
B.
,
Pokharel
,
J.
,
Baniya
,
A.
, et al
,
2020
, “
Fluorinated Hybrid Solid-Electrolyte-Interphase for Dendrite-Free Lithium Deposition
,”
Nat. Commun.
,
11
(
1
), p.
93
.
46.
Toma
,
M.
,
Chan-Akeley
,
R.
,
Arias
,
J.
,
Kurgansky
,
G.
, and
Mao
,
W.
,
2021
, “
Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics
,”
Biology (Basel)
,
10
(
3
), p.
185
.
47.
Peng
,
C.
,
Guo
,
X.
,
Wu
,
W.
, and
Wang
,
Y.
,
2016
, “
Unified Modelling of Granular Media With Smoothed Particle Hydrodynamics
,”
Acta Geotech.
,
11
(
6
), pp.
1231
1247
.
48.
Zhou
,
X.
,
Yao
,
W.-W.
, and
Berto
,
F.
,
2021
, “
Smoothed Peridynamics for the Extremely Large Deformation and Cracking Problems: Unification of Peridynamics and Smoothed Particle Hydrodynamics
,”
Fatigue Fract. Eng. Mater. Struct.
,
44
(
9
), pp.
2444
2461
.
You do not currently have access to this content.