Abstract

Overheating of Li-ion cells and battery packs is an ongoing technological challenge for electrochemical energy conversion and storage, including in electric vehicles. Immersion cooling is a promising thermal management technique to address these challenges. This work presents experimental and theoretical analysis of the thermal and electrochemical impact of immersion cooling of a small module of Li-ion cells. Significant reduction in both surface and core temperature due to immersion cooling is observed, consistent with theoretical and simulation models developed here. However, immersion cooling is also found to result in a small but non-negligible increase in capacity fade of the cells. A number of hypotheses are formed and systematically tested through a comparison of experimental measurements with theoretical modeling and simulations. Electrochemical Impedance Spectroscopy measurements indicate that the accelerated cell aging due to immersion cooling is likely to be due to enhanced lithium plating. Therefore, careful consideration of the impact of immersion cooling on long-term performance may be necessary. The results presented in this work quantify both thermal and electrochemical impacts of a promising thermal management technique for Li-ion cells. These results may be of relevance for design and optimization of electrochemical energy conversion and storage systems.

References

1.
Shim
,
J.
,
2002
, “
Electrochemical Analysis for Cycle Performance and Capacity Fading of a Lithium-Ion Battery Cycled at Elevated Temperature
,”
J. Power Sources
,
112
(
1
), pp.
222
230
.
2.
Carter
,
R.
, and
Love
,
C. T.
,
2018
, “
Modulation of Lithium Plating in Li-Ion Batteries With External Thermal Gradient
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26328
26334
.
3.
Mishra
,
D.
, and
Jain
,
A.
,
2021
, “
Multi-Mode Heat Transfer Simulations of the Onset and Propagation of Thermal Runaway in a Pack of Cylindrical Li-Ion Cells
,”
J. Electrochem. Soc.
,
168
(
2
), p.
020504
.
4.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
.
5.
Shah
,
K.
,
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
Modeling of Steady-State Convective Cooling of Cylindrical Li-Ion Cells
,”
J. Power Sources
,
258
, pp.
374
381
.
6.
Shah
,
K.
,
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
An Experimentally Validated Transient Thermal Model for Cylindrical Li-Ion Cells
,”
J. Power Sources
,
271
, pp.
262
268
.
7.
Chalise
,
D.
,
Shah
,
K.
,
Prasher
,
R.
, and
Jain
,
A.
,
2018
, “
Conjugate Heat Transfer Analysis of Thermal Management of a Li-Ion Battery Pack
,”
J. Electrochem. Energy Convers. Storage
,
15
(
1
), pp.
1
8
.
8.
Dan
,
D.
,
Yao
,
C.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Zeng
,
Z.
, and
Xu
,
X.
,
2019
, “
Dynamic Thermal Behavior of Micro Heat Pipe Array-Air Cooling Battery Thermal Management System Based on Thermal Network Model
,”
Appl. Therm. Eng.
,
162
, p.
114183
.
9.
Zhang
,
H.
,
Li
,
C.
,
Zhang
,
R.
,
Lin
,
Y.
, and
Fang
,
H.
,
2020
, “
Thermal Analysis of a 6s4p Lithium-Ion Battery Pack Cooled by Cold Plates Based on a Multi-Domain Modeling Framework
,”
Appl. Therm. Eng.
,
173
, p.
115216
.
10.
Behi
,
H.
,
Karimi
,
D.
,
Behi
,
M.
,
Ghanbarpour
,
M.
,
Jaguemont
,
J.
,
Sokkeh
,
M. A.
,
Gandoman
,
F. H.
,
Berecibar
,
M.
, and
van Mierlo
,
J.
,
2020
, “
A New Concept of Thermal Management System in Li-Ion Battery Using Air Cooling and Heat Pipe for Electric Vehicles
,”
Appl. Therm. Eng.
,
174
, p.
115280
.
11.
Anthony
,
D.
,
Wong
,
D.
,
Wetz
,
D.
, and
Jain
,
A.
,
2017
, “
Non-Invasive Measurement of Internal Temperature of a Cylindrical Li-Ion Cell During High-Rate Discharge
,”
Int. J. Heat Mass. Transf.
,
111
, pp.
223
231
.
12.
Anthony
,
D.
,
Wong
,
D.
,
Wetz
,
D.
, and
Jain
,
A.
,
2017
, “
Improved Thermal Performance of a Li-Ion Cell Through Heat Pipe Insertion
,”
J. Electrochem Soc.
,
164
(
6
), pp.
A961
A967
.
13.
Shah
,
K.
, and
Jain
,
A.
,
2015
, “
Modeling of Steady-State and Transient Thermal Performance of a Li-Ion Cell With an Axial Fluidic Channel for Cooling
,”
Int. J. Energy Res.
,
39
(
4
), pp.
573
584
.
14.
Shah
,
K.
,
McKee
,
C.
,
Chalise
,
D.
, and
Jain
,
A.
,
2016
, “
Experimental and Numerical Investigation of Core Cooling of Li-Ion Cells Using Heat Pipes
,”
Energy
,
113
, pp.
852
860
.
15.
Lin
,
X.
,
Perez
,
H. E.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2014
, “
A Lumped-Parameter Electro-Thermal Model for Cylindrical Batteries
,”
J. Power Sources
,
257
, pp.
1
11
.
16.
Damay
,
N.
,
Forgez
,
C.
,
Bichat
,
M.-P.
, and
Friedrich
,
G.
,
2015
, “
Thermal Modeling of Large Prismatic LiFePO4/Graphite Battery. Coupled Thermal and Heat Generation Models for Characterization and Simulation
,”
J. Power Sources
,
283
, pp.
37
45
.
17.
LeBel
,
F.-A.
,
Wilke
,
S.
,
Schweitzer
,
B.
,
Roux
,
M.-A.
,
Al-Hallaj
,
S.
, and
Trovao
,
J. P. F.
,
2016
, “
A Lithium-Ion Battery Electro-Thermal Model of Parallelized Cells
,”
Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)
,
Montreal, QC, Canada
,
Sept. 18–21
,
IEEE
, pp.
1
6
.
18.
Liu
,
F.
,
Lan
,
F.
, and
Chen
,
J.
,
2016
, “
Dynamic Thermal Characteristics of Heat Pipe via Segmented Thermal Resistance Model for Electric Vehicle Battery Cooling
,”
J. Power Sources
,
321
, pp.
57
70
.
19.
Ramotar
,
L.
,
Rohrauer
,
G. L.
,
Filion
,
R.
, and
MacDonald
,
K.
,
2017
, “
Experimental Verification of a Thermal Equivalent Circuit Dynamic Model on an Extended Range Electric Vehicle Battery Pack
,”
J. Power Sources
,
343
, pp.
383
394
.
20.
Jiang
,
Z. Y.
,
Qu
,
Z. G.
,
Zhang
,
J. F.
, and
Rao
,
Z. H.
,
2020
, “
Rapid Prediction Method for Thermal Runaway Propagation in Battery Pack Based on Lumped Thermal Resistance Network and Electric Circuit Analogy
,”
Appl. Energy
,
268
, p.
115007
.
21.
Cui
,
X.
,
Zeng
,
J.
,
Zhang
,
H.
,
Yang
,
J.
,
Qiao
,
J.
,
Li
,
J.
, and
Li
,
W.
,
2020
, “
Optimization of the Lumped Parameter Thermal Model for Hard-Cased Li-Ion Batteries
,”
J. Energy Storage
,
32
, p.
101758
.
22.
Ganesan
,
V. V.
, and
Jain
,
A.
,
2021
, “
Computationally-Efficient Thermal Simulations of Large Li-Ion Battery Packs Using Submodeling Technique
,”
Int. J. Heat Mass. Transf.
,
165
, p.
120616
.
23.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2015
, “
Thermal Management Optimization of an Air-Cooled Li-Ion Battery Module Using Pin-Fin Heat Sinks for Hybrid Electric Vehicles
,”
J. Power Sources
,
273
, pp.
431
439
.
24.
Lu
,
Z.
,
Meng
,
X. Z.
,
Wei
,
L. C.
,
Hu
,
W. Y.
,
Zhang
,
L. Y.
, and
Jin
,
L. W.
,
2016
, “
Thermal Management of Densely-Packed EV Battery With Forced Air Cooling Strategies
,”
Energy Procedia
,
88
, pp.
682
688
.
25.
Akbarzadeh
,
M.
,
Jaguemont
,
J.
,
Kalogiannis
,
T.
,
Karimi
,
D.
,
He
,
J.
,
Jin
,
L.
,
Xie
,
P.
,
van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Novel Liquid Cooling Plate Concept for Thermal Management of Lithium-Ion Batteries in Electric Vehicles
,”
Energy Convers. Manag.
,
231
, p.
113862
.
26.
Chung
,
Y.
, and
Kim
,
M. S.
,
2019
, “
Thermal Analysis and Pack Level Design of Battery Thermal Management System With Liquid Cooling for Electric Vehicles
,”
Energy Convers. Manag.
,
196
, pp.
105
116
.
27.
Smith
,
J.
,
Singh
,
R.
,
Hinterberger
,
M.
, and
Mochizuki
,
M.
,
2018
, “
Battery Thermal Management System for Electric Vehicle Using Heat Pipes
,”
Int. J. Therm. Sci.
,
134
, pp.
517
529
.
28.
Mostafavi
,
A.
, and
Jain
,
A.
,
2021
, “
Dual-Purpose Thermal Management of Li-Ion Cells Using Solid-State Thermoelectric Elements
,”
Int. J. Energy Res.
,
45
(
3
), pp.
4303
4313
.
29.
Alaoui
,
C.
,
2013
, “
Solid-State Thermal Management for Lithium-Ion EV Batteries
,”
IEEE Trans. Veh. Technol.
,
62
(
1
), pp.
98
107
.
30.
Lu
,
M.
,
Zhang
,
X.
,
Ji
,
J.
,
Xu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Research Progress on Power Battery Cooling Technology for Electric Vehicles
,”
J. Energy Storage
,
27
, p.
101155
.
31.
Javani
,
N.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Yilbas
,
B. S.
,
2014
, “
Heat Transfer and Thermal Management With PCMs in a Li-Ion Battery Cell for Electric Vehicles
,”
Int. J. Heat Mass. Transf.
,
72
, pp.
690
703
.
32.
Yuan
,
X.
,
Tang
,
A.
,
Shan
,
C.
,
Liu
,
Z.
, and
Li
,
J.
,
2020
, “
Experimental Investigation on Thermal Performance of a Battery Liquid Cooling Structure Coupled with Heat Pipe
,”
J. Energy Storage
,
32
, p.
101984
.
33.
Bernagozzi
,
M.
,
Georgoulas
,
A.
,
Miché
,
N.
,
Rouaud
,
C.
, and
Marengo
,
M.
,
2021
, “
Novel Battery Thermal Management System for Electric Vehicles With a Loop Heat Pipe and Graphite Sheet Inserts
,”
Appl. Therm. Eng.
,
194
, p.
117061
.
34.
He
,
W.
,
Zhang
,
G.
,
Zhang
,
X.
,
Ji
,
J.
,
Li
,
G.
, and
Zhao
,
X.
,
2015
, “
Recent Development and Application of Thermoelectric Generator and Cooler
,”
Appl. Energy
,
143
, pp.
1
25
.
35.
Wu
,
S.
,
Lao
,
L.
,
Wu
,
L.
,
Liu
,
L.
,
Lin
,
C.
, and
Zhang
,
Q.
,
2022
, “
Effect Analysis on Integration Efficiency and Safety Performance of a Battery Thermal Management System Based on Direct Contact Liquid Cooling
,”
Appl. Therm. Eng.
,
201
, p.
117788
.
36.
Patil
,
M. S.
,
Seo
,
J.-H.
, and
Lee
,
M.-Y.
,
2021
, “
A Novel Dielectric Fluid Immersion Cooling Technology for Li-Ion Battery Thermal Management
,”
Energy Convers. Manag.
,
229
, p.
113715
.
37.
Wang
,
Y.
,
Rao
,
Z.
,
Liu
,
S.
,
Li
,
X.
,
Li
,
H.
, and
Xiong
,
R.
,
2021
, “
Evaluating the Performance of Liquid Immersing Preheating System for Lithium-Ion Battery Pack
,”
Appl. Therm. Eng.
,
190
, p.
116811
.
38.
Tan
,
X.
,
Lyu
,
P.
,
Fan
,
Y.
,
Rao
,
J.
, and
Ouyang
,
K.
,
2021
, “
Numerical Investigation of the Direct Liquid Cooling of a Fast-Charging Lithium-Ion Battery Pack in Hydrofluoroether
,”
Appl. Therm. Eng.
,
196
, p.
117279
.
39.
“Product Specification: Rechargeable Lithium Ion Battery (Model : INR21700 M50 18.20Wh)”, https://www.dnkpower.com/wp-content/uploads/2019/02/LG-INR21700-M50-Datasheet.pdf. Accessed September 17, 2023.
40.
Drake
,
S. J.
,
Martin
,
M.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2015
, “
Heat Generation Rate Measurement in a Li-Ion Cell at Large C-Rates Through Temperature and Heat Flux Measurements
,”
J. Power Sources
,
285
, pp.
266
273
.
41.
Lechner
,
B.
,
Benezeder
,
F.
,
Golubkov
,
A.
,
Rasch
,
B.
,
Scheiber
,
A.
,
Winder
,
L.
,
Zitz
,
C.
,
Potenza
,
R.
, and
Prentice
,
G.
,
2023
, “
Immersion vs Indirect Cooling: A Comparison of Battery Thermal Management Approaches: Fast-Charging, Battery Lifetime, and Thermal Propagation Performance
,” P
roceedings of the 44th International Vienna Motor Symposium
,
Wien, Austria
,
Apr. 26–28
, https://graz.elsevierpure.com/en/publications/immersion-vs-indirect-cooling-a-comparison-of-battery-thermal-man
42.
Gaberšček
,
M.
,
2021
, “
Understanding Li-Based Battery Materials via Electrochemical Impedance Spectroscopy
,”
Nat. Commun.
,
12
(
1
), p.
6513
.
43.
Koleti
,
U. R.
,
Dinh
,
T. Q.
, and
Marco
,
J.
,
2020
, “
A New On-Line Method for Lithium Plating Detection in Lithium-Ion Batteries
,”
J. Power Sources
,
451
, p.
227798
.
44.
Parhizi
,
M.
,
Ahmed
,
M. B.
, and
Jain
,
A.
,
2017
, “
Determination of the Core Temperature of a Li-Ion Cell During Thermal Runaway
,”
J. Power Sources
,
370
, pp.
27
35
.
45.
Hales
,
A.
,
Marzook
,
M. W.
,
Bravo Diaz
,
L.
,
Patel
,
Y.
, and
Offer
,
G.
,
2020
, “
The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection From Lithium Ion Battery Pouch Cells
,”
J. Electrochem Soc.
,
167
(
2
), p.
020524
.
46.
Forgez
,
C.
,
Vinh Do
,
D.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
.
47.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Stevens
,
D. A.
,
Christensen
,
L.
, and
Dahn
,
J. R.
,
2000
, “
Importance of Heat Transfer by Radiation in Li-Ion Batteries During Thermal Abuse
,”
Electrochem. Solid-State Lett.
,
3
(
7
), p.
305
.
48.
Troxler
,
Y.
,
Wu
,
B.
,
Marinescu
,
M.
,
Yufit
,
V.
,
Patel
,
Y.
,
Marquis
,
A. J.
,
Brandon
,
N. P.
, and
Offer
,
G. J.
,
2014
, “
The Effect of Thermal Gradients on the Performance of Lithium-Ion Batteries
,”
J. Power Sources
,
247
, pp.
1018
1025
.
49.
Zhao
,
Y.
,
Patel
,
Y.
,
Zhang
,
T.
, and
Offer
,
G. J.
,
2018
, “
Modeling the Effects of Thermal Gradients Induced by Tab and Surface Cooling on Lithium Ion Cell Performance
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
A3169
A3178
.
50.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
.
Wiley
,
New York
.
51.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Horizontal Cylinder
,”
Int. J. Heat Mass. Transf.
,
18
(
9
), pp.
1049
1053
.
52.
Churchill
,
S. W.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
J. Heat Transfer
,
99
(
2
), pp.
300
306
.
53.
Carter
,
R.
,
Kingston
,
T. A.
,
Atkinson
,
R. W.
,
Parmananda
,
M.
,
Dubarry
,
M.
,
Fear
,
C.
,
Mukherjee
,
P. P.
, and
Love
,
C. T.
,
2021
, “
Directionality of Thermal Gradients in Lithium-Ion Batteries Dictates Diverging Degradation Modes
,”
Cell Rep. Phys. Sci.
,
2
(
3
), p.
100351
.
You do not currently have access to this content.