This paper presents a three-dimensional transitional model to describe an innovative design for an air-breathing proton exchange membrane fuel cell (AB-PEMFC) with a microdiaphragm actuated by a piezoelectric device. This newly designed gas pump with a piezoelectric actuation structure is utilized as an air-flow channel in a proton exchange membrane fuel cell (PEMFC) system called PZT-PEMFC. When the actuator moves in the outward direction to increase the cathode channel volume, the air is sucked into the chamber: inward movement decreases channel volume and thereby compresses air into the catalyst layer and enhances the chemical reaction. The air-standard PZT-PEMFC cycle coupling with fuel∕air ratio is proposed to describe an air-breathing PZT-PEMFC. The model is able to simulate its major phenomena and performance in different fuel∕air ratio and PZT frequency. The results show that the PZT actuation leads to a more stable current output, more drained water, stronger suction, and overcome concentration losses at a proper PZT frequency.

1.
Yi
,
J. S.
, and
Nguyen
,
T. V.
, 1998, “
An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
1149
1159
.
2.
Ge
,
S. H.
, and
Yi
,
B. L.
, 2003, “
A Mathematical Model for PEMFC in Different Flow Modes
,”
J. Power Sources
0378-7753,
124
, pp.
1
11
.
3.
Fuller
,
T. F.
, and
Newman
,
J.
, 1992, “
Experimental Determination of the Transport Number of Water in Nafion 117 Membrane
,”
J. Electrochem. Soc.
0013-4651,
139
, pp.
1332
1337
.
4.
Zawodzinski
,
T. A.
,
Davey
,
J.
,
Valerio
,
J.
, and
Gottesfeld
,
S.
, 1995, “
The Water Content Dependence of Electro-Osmotic Drag in Proton-Conducting Polymer Electrolytes
,”
Electrochim. Acta
0013-4686,
40
, pp.
297
302
.
5.
Ge
,
S. H.
,
Yi
,
B. L.
, and
Ming
,
P. W.
, 2006, “
Experimental Determination of Electro-Osmotic Drag Coefficient in Nafion Membrane for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A1443
-
A1450
.
6.
Ise
,
M.
,
Kreuer
,
K. D.
, and
Maier
,
J.
, 1999, “
Electroosmotic Drag in Polymer Electrolyte Membranes: An Electrophoretic NMR Study
,”
Solid State Ionics
0167-2738,
125
, pp.
213
223
.
7.
Wang
,
Y.
, and
Ouyang
,
M.
, 2007, “
Three-Dimensional Heat and Mass Transfer Analysis in an Air-Breathing Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
164
, pp.
721
729
.
8.
Rajani
,
B. P. M.
, and
Kolar
,
A. K.
, 2007, “
A Model for a Vertical Planar Air Breathing PEM Fuel Cell
,”
J. Power Sources
0378-7753,
164
, pp.
210
221
.
9.
Ying
,
W.
,
Ke
,
J.
,
Lee
,
W. Y.
,
Yang
,
T. H.
,
Kim
,
C. S.
, 2005, “
Effects of Cathode Channel Configurations on the Performance of an Air-Breathing PEMFC
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
1351
1361
.
10.
Ying
,
W.
,
Yang
,
T. H.
,
Lee
,
W. Y.
,
Ke
,
J.
, and
Kim
,
C. S.
, 2005, “
Three-Dimensional Analysis for Effect of Channel Configuration on the Performance of a Small Air-Breathing Proton Exchange Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
0378-7753,
145
, pp.
572
581
.
11.
Ying
,
W.
,
Sohn
,
Y. J.
,
Lee
,
W. Y.
,
Ke
,
J.
, and
Kim
,
C. S.
, 2005, “
Three-Dimensional Modeling and Experimental Investigation for an Air-Breathing Polymer Electrolyte Membrane Fuel Cell (PEMFC)
,”
J. Power Sources
0378-7753,
145
, pp.
563
571
.
12.
Matamoros
,
L.
, and
Bruggemann
,
D.
, 2007, “
Concentration and Ohmic Losses in Free-Breathing PEMFC
,”
J. Power Sources
0378-7753,
173
, pp.
367
374
.
13.
Jeong
,
S. U.
,
Cho
,
E. A.
,
Kim
,
H. J.
,
Lim
,
T. K.
,
Oh
,
I. H.
, and
Kim
,
S. H.
, 2006, “
A Study on Cathode Structure and Water Transport in Air-Breathing PEM Fuel Cells
,”
J. Power Sources
0378-7753,
159
, pp.
1089
1094
.
14.
Jeong
,
S. U.
,
Cho
,
E. A.
,
Kim
,
H. J.
,
Lim
,
T. K.
,
Oh
,
I. H.
, and
Kim
,
S. H.
, 2006, “
Effects of Cathode Open Area and Relative Humidity on the Performance of Air-Breathing Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
158
, pp.
348
353
.
15.
Li
,
X.
, and
Sabir
,
I.
, 2004, “
Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs
,”
Int. J. Hydrogen Energy
0360-3199,
30
, pp.
359
371
.
16.
Wang
,
X. D.
,
Duan
,
Y. Y.
,
Yan
,
W. M.
, and
Peng
,
X. F.
, 2007, “
Local Transport Phenomena and Cell Performance of PEM Fuel Cells with Various Serpentine FlowField Designs
,”
J. Power Sources
0378-7753,
175
, pp.
397
407
.
17.
Ma
,
H. K.
,
Hou
,
B. R.
,
Wu
,
H. Y.
,
Lin
,
C. Y.
, and
Gao
,
J. J.
, 2008, “
Development and Application of a Diaphragm Micro-Pump With Piezoelectric Device
,”
Microsyst. Technol.
0946-7076,
14
, pp.
1001
1007
.
18.
Ma
,
H. K.
,
Huang
,
S. H.
,
Chen
,
B. R.
, and
Cheng
,
L. W.
, 2008, “
Numerical Study of a Novel Micro-diaphragm Flow Channel with Piezoelectric Device for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
180
(
1
), pp.
402
409
.
19.
Pulkrabek
,
W. W.
, 2003,
Engineering Fundamentals of the Internal Combustion Engine
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.