An investigation of the flip-chip bonding process for application in MEMS devices was carried out. Finite element analyses of axisymmetric and non-axisymmetric solder joint geometries were performed. It was found that in typical cases of MEMS devices in which the solder volume is small (Bo1, where Bo is the Bond number), the finite element solution of the axisymmetric solder joint is well approximated by a surface of revolution whose generating meridian is a circular arc. Experimental results of solder joints in flip-chip assembly were found to correlate well with simulation results.

1.
Harsh
,
K. F.
,
Su
,
B. Z.
,
Zhang
,
W. G.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2000
, “
The Realization and Design Considerations of a Flip-Chip Integrated MEMS Tunable Capacitor
,”
Sens. Actuators A
,
80
(
2
), pp.
108
118
.
2.
Salalha, W., Zussman, E., Meltser, M., and Kaldor, S., 2000, “Prediction of Yield for Flip-chip Packaging,” Proc. of the 10th CIRP Design Seminar, Israel, pp. 259–263.
3.
Finn, H., 1990, Equilibrium Capillary Surfaces, Springer-Verlag, NY.
4.
Goldmann
,
L. S.
,
1969
, “
Geometric Optimization of Controlled Collapse Interconnections
,”
IBM J. Res. Dev.
,
13
, pp.
251
265
.
5.
Heinrich
,
S. M.
,
Schaefer
,
M.
,
Schoroeder
,
S. A.
, and
Lee
,
P. S.
,
1996
, “
Prediction of Solder Joint Geometries in Array-Type Interconnects
,”
ASME J. Electron. Packag.
,
118
(
3
), pp.
114
121
.
6.
Chiang
,
K. N.
, and
Chen
,
W. L.
,
1998
, “
Electronic Packaging Reflow Shape Prediction for the Solder Mask-Defined Ball Grid Array
,”
ASME J. Electron. Packag.
,
120
(
2
), pp.
175
178
.
7.
Katyl
,
R. H.
, and
Primbley
,
W. T.
,
1992
, “
Shape and Force Relationships for Molten Axisymmetric Solder Connections
,”
ASME J. Electron. Packag.
,
114
(
3
), pp.
336
341
.
8.
Patra
,
S. K.
, and
Lee
,
Y. C.
,
1991
, “
Quasi-Static Modeling of the Self-Alignment-Part 1: Single Solder Joint
,”
ASME J. Electron. Packag.
,
113
(
3
), pp.
337
342
.
9.
Patra
,
S. K.
,
Sritharan
,
S. S.
, and
Lee
,
Y. C.
,
1995
, “
Quantitative Characterization of Flip-Chip Solder Joints
,”
ASME J. Appl. Mech.
,
62
(
2
), pp.
390
397
.
10.
Brakke
,
K.
,
1992
, “
The Surface Evolver
,”
Exp. Mech.
,
1
, pp.
141
165
.
11.
Nigro
,
N. J.
,
Zhou
,
F. J.
,
Heinrich
,
S. M.
,
Elkouh
,
A. F.
,
Fournelle
,
R. A.
, and
Lee
,
P. S.
,
1998
, “
Parametric Finite Element Method for Predicting Shapes of Three-Dimensional Solder Joints
,”
ASME J. Electron. Packag.
,
118
(
3
), pp.
142
147
.
12.
Subbarayan
,
G.
,
1996
, “
A Procedure for Automated Shape and Life Prediction in Flip-Chip and BGA Solder Joints
,”
ASME J. Electron. Packag.
,
118
(
3
), pp.
127
133
.
13.
Salalha, W., Zussman, E., and Bar-Yoseph, P. Z., 2002, “Modeling and Simulation of Flip-Chip Bonding,” Technical Report, TME # 476, Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa, Israel.
14.
Myshkis, A. D., Babskii, V. G., Kopachevskii, N. D., Solobozhanin, L. A., and Tyuptso, A. D., 1986, Low-Gravity Fluid Mechanics, Springer-Verlag, NY.
15.
Lau, J. H., 1995, Flip Chip Technologies, McGraw-Hill, NY.
16.
Jang
,
S.-Y.
, and
Paik
,
K.-W.
,
1998
, “
Eutectic Sn/Pb Solder Bump and Under Bump Metallurgy: Interfacial Reactions and Adhesion
,”
Soldering & Surface Mount Technology
,
10
(
3
), pp.
29
37
.
You do not currently have access to this content.