A unified creep plasticity damage (UCPD) constitutive model was developed to predict the fatigue of 95.5Sn–3.9Ag–0.6Cu solder joints. Compression, stress-strain and creep properties were generated in previous studies of this solder. Crack damage was reflected in a single state variable, Dω, in the model. Isothermal fatigue tests were performed at 25°C, 100°C, and 160°C using a double-lap shear test specimen. A new approach to fitting the revised damage model is proposed based on finite element analysis (FEA) simulation of the load decay of the fatigued solder material. Accurate predictions required that those parameters be temperature dependent. The UCPD constitutive model was successfully implemented as a subroutine in the commercial finite element code ANSYS®. Consistent predictions were obtained as demonstrated by a comparison of results generated from FEA simulation of the test assembly against analogous experimental results.

1.
Ku
,
A.
,
Ogunseitan
,
O.
,
Saphores
,
J.-D.
,
Shapiro
,
A.
, and
Schoenung
,
J. M.
, 2003, “
Lead-Free Solders: Issues of Toxicity, Availability and Impacts of Extraction
,”
53rd Electronic Components and Technology Conference (ECTC)
, IEEE.
2.
Müller
,
J.
,
Griese
,
H.
, and
Reichl
,
H.
, 1999, “
Reduced Environmental Impacts by Lead Free Electronic Assemblies
,”
IPCWorks’99
, IPC.
3.
Syed
,
A.
, 2001, “
Reliability and Au Embrittlement of Lead Free Solders for BGA Applications
,”
Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials Processes, Properties and Interfaces
, pp.
143
147
.
4.
Mackie
,
A. C.
, 1999, “
Rethinking the Importance of Reflow Atmospheres in the Lead-Free Era
,”
IPCWorks’99
, IPC.
5.
Elfnet
, 2005, “
Analysis of the Current Status of European Lead-Free Soldering 2004
,” European Lead-Free Soldering Network, Report No. D5.1, pp.
1
22
.
6.
Frear
,
D.
,
Grivas
,
D.
, and
Morris
,
J.
, 1988, “
A Microstructural Study of the Thermal Fatigue Failures of 60Sn–40Pb Solder Joints
,”
J. Electron. Mater.
0361-5235,
17
(
2
), pp.
171
180
.
7.
Frear
,
D. R.
,
Burchett
,
S. N.
, and
Neilsen
,
M. K.
, 1997, “
Life Prediction Modeling of Solder Interconnects for Electronic Systems
,”
ASME InterPack’97
, Kohula, HI.
8.
Frear
,
D. R.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
, and
Stephens
,
J. J.
, 1997, “
Microstructurally Based Finite Element Simulation of Solder Joint Behaviour
,”
Soldering Surf. Mount Technol.
0954-0911,
9
(
1
), pp.
39
42
.
9.
Burchett
,
S. N.
,
Neilsen
,
M. K.
,
Frear
,
D. R.
, and
Stephens
,
J. J.
, 1997, “
Computational Continuum Modeling of Solder Interconnects
,”
TMS Annual Meeting
, pp.
171
178
.
10.
Vianco
,
P. T.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
,
Rejent
,
J. A.
, and
Frear
,
D. R.
, 1999, “
Coarsening of the Sn–Pb Solder Microstructure in Constitutive Model-Based Predictions of Solder Joint Thermal Mechanical Fatigue
,”
J. Electron. Mater.
0361-5235,
28
(
11
), pp.
1290
1298
.
11.
Vianco
,
P. T.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
, and
Rejent
,
J. A.
, 2003, “
Computational Methodologies for Predicting Thermal Mechanical Fatigue in Soldered Interconnects
,”
International Brazing and Soldering Conference
.
12.
Wei
,
Y.
,
Chow
,
C. L.
, and
Fang
,
H. E.
,
Neilsen
,
M. K.
,
Lim
,
T. J.
, and
Lu
,
W.
, 2001, “
Failure Analysis of Miniature Solder Specimen
,”
ASME International Mechanical Engineering Congress and Exposition, Proceedings
, Vol.
2
, pp.
2307
2313
.
13.
Wei
,
Y.
,
Chow
,
C. L.
,
Neilsen
,
M. K.
, and
Fang
,
H. E.
, 2003, “
Failure Analysis of Solder Joints With a Damage-Coupled Viscoplastic Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
56
(
14
), pp.
2199
2211
.
14.
Vianco
,
P. T.
,
Grazier
,
M. J.
,
Cotts
,
E.
, and
Lehman
,
L.
, 2005, unpublished data, Sandia National Laboratories, Albuquerque, NM and SUNY Binghamton, NY.
15.
Dunford
,
S.
,
Primavera
,
A.
, and
Meilunas
,
M.
, 2002, “
Microstructural Evolution and Damage Mechanisms in Pb-Free Solder Joints During Extended −40°Cto125°C Thermal Cycles
,”
IPC Conference
.
16.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Martin
,
J. J.
, 2003, “
The Compression Stress-Strain Behavior Of Sn–Ag–Cu Solder
,”
JOM
1047-4838,
55
(
6
), pp.
50
55
.
17.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Kilgo
,
A. C.
, 2003, “
Time-Independent Mechanical and Physical Properties of the Ternary 95.5Sn–3.9Ag–0.6Cu Solder
,”
J. Electron. Mater.
0361-5235,
32
(
3
), pp.
142
151
.
18.
Fossum
,
A. F.
,
Vianco
,
P. T.
,
Neilsen
,
M. K.
, and
Pierce
,
D. M.
, 2006, “
A Practical Viscoplastic Damage Model for Lead-Free Solder
,”
ASME J. Electron. Packag.
1043-7398,
128
(
1
), pp.
71
81
.
19.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Kilgo
,
A. C.
, 2004, “
Creep Behavior of the Ternary 95.5Sn–3.9Ag–0.6Cu Solder. Part I. As-Cast Condition
,”
J. Electron. Mater.
0361-5235,
33
(
11
), pp.
1389
1400
.
20.
Vianco
,
P. T.
,
Rejent
,
J. A.
, and
Kilgo
,
A. C.
, 2004, “
Creep Behavior of the Ternary 95.5Sn–3.9Ag–0.6Cu Solder. Part II. Aged Condition
,”
J. Electron. Mater.
0361-5235,
33
(
12
), pp.
1473
1484
.
21.
Neilsen
,
M. K.
,
Burchett
,
S. N.
, et al.
, 1996, “
A Viscoplastic Theory for Braze Alloys
,” Sandia Report No. SAND96-0984, pp.
1
56
.
22.
Hart
,
E.
, 1976, “
Constitutive Relations for the Nonelastic Deformation of Metals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
(
3
), pp.
193
202
.
23.
Hart
,
E.
, 1984, “
Micromechanical Basis for Constitutive Equations With Internal State Variables
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
(
4
), pp.
322
325
.
24.
Miller
,
A.
, 1976, “
Inelastic Constitutive Model for Monotonic, Cyclic, and Creep Deformation. Part 1. Equations Development and Analytical Procedures
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
(
2
), pp.
97
105
.
25.
Miller
,
A.
, 1987,
Unified Constitutive Equations for Creep and Plasticity
,
Elsevier Applied Science
,
New York
.
26.
Bammann
,
D.
, 1990, “
Modeling the Temperature and Strain Rate Dependent Large Deformation of Metals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
43
(
5
), pp.
S312
S319
.
27.
Freed
,
A.
, and
Walker
,
K.
, 1993, “
Viscoplasticity With Creep and Plasticity Bounds
,”
Int. J. Plast.
0749-6419,
9
(
2
), pp.
213
242
.
28.
Kachanov
,
L.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus Nijhoff
,
Boston
.
29.
Rabotnov
,
Y.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
30.
Bodner
,
S. R.
, 1985, “
Evolution Equations for Anisotropic Hardening and Damage of Elastic-Viscoplastic Materials
,”
Plasticity Today: Modeling, Methods and Applications
,
Elsevier Applied Science
,
Udine, Italy
, pp.
471
482
.
31.
Bodner
,
S. R.
, and
Chan
,
K. S.
, 1986, “
Modeling of Continuum Damage for Application in Elastic-Viscoplastic Constitutive Equations
,”
Eng. Fract. Mech.
0013-7944,
25
(
5–6
), pp.
705
712
.
32.
Hayhurst
,
D. R.
, 1972, “
Creep Rupture Under Multi-Axial States of Stress
,”
J. Mech. Phys. Solids
0022-5096,
20
(
6
), pp.
381
390
.
33.
2002, “
IPC-9701 Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments
,” pp.
1
32
.
34.
Vianco
,
P. T.
, 2003–2006, private communication.
35.
Grazier
,
M. J.
, 2003–2005, private communication.
36.
Darveaux
,
R.
, 2002, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packag.
1043-7398,
124
(
3
), pp.
147
154
.
37.
Stephens
,
J. J.
, and
Neilsen
,
M. K.
, 2006, “
Mechanical Behavior of the 98Ag–2Zr and 97Ag–1Cu–2Zr Active Braze Alloys
,”
International Brazing and Soldering Conference
,
San Antonio, TX
.
38.
Bodner
,
S. R.
, and
Chan
,
K. S.
, 1985, “
Modeling of Continuum Damage for Application in Elastic-Viscoplastic Constitutive Equations
,”
Eng. Fract. Mech.
0013-7944,
25
(
5–6
), pp.
705
712
.
39.
Pierce
,
D. M.
, 2007, “
Continuum Damage Mechanics Based Failure Prediction Methodology for 95.5Sn–3.9Ag–0.6Cu Solder Alloy Interconnects in Electronic Packaging
,” Mechanical Engineering, Stanford University, p.
423
.
40.
Pierce
,
D. M.
,
Sheppard
,
S. D.
, and
Vianco
,
P. T.
, 2007, “
A General Methodology to Predict Fatigue Life in Lead-Free Solder Alloy Interconnects
,”
ASME J. Electron. Packag.
1043-7398, submitted.
41.
Freed
,
A. D.
, and
Iskovitz
,
I. S.
, 1996, “
Development and Applications of a Rosenbrock Integrator
,” Lewis Research Center, National Aeronautics and Space Administration, NASA Technical Memorandum No. 4709, pp.
1
36
.
42.
Freed
,
A. D.
, 1996, “
Designing ROW Methods
,” Lewis Research Center, National Aeronautics and Space Administration, NASA Technical Memorandum No. 107313. pp.
1
10
.
You do not currently have access to this content.