An innovative heat sink design aimed at meeting both the hot spot and large background heat flux requirements of next generation integrated circuits is presented. The heat sink design utilizes two separate unmixed fluids to meet the cooling requirements of the chip with one fluid acting as a fluidic spreader dedicated to cooling the hot spots only, while the second fluid serves as both a coolant for the background heat fluxes and an on-chip regenerator for the hot spot fluid. In this paper the conceptual heat sink design is presented and its theoretical capabilities are explored through optimization calculations and computational fluid dynamics simulations. It has been shown that through close coupling of the two thermal fluids the proposed hybrid heat sink can theoretically remove hot spot heat fluxes on the order of 1kW/cm2 and background heat fluxes up to 100W/cm2 in one compact and efficient package. Additionally, it has been shown that the F2/S2 design can handle these thermal loads with a relatively small pressure drop penalty, within the realm of existing micropump technologies. Finally, the feasibility of the F2/S2 design was demonstrated experimentally by modifying a commercially available, air-cooled aluminum heat sink to accommodate an integrated hot spot cooling system and fluidic spreader. The results of these experiments, where the prototype heat sink was able to remove hot spot heat fluxes of up to 365W/cm2 and background heat fluxes of up to 20W/cm2, are reported.

1.
Viswanath
,
R.
,
Vijay
,
W.
,
Watwe
,
A.
, and
Lebonheur
,
V.
, 2000, “
Thermal Performance Challenges From Silicon to Systems
,”
Intel Technol. J.
1535-864X,
3
, pp.
1
16
.
2.
Koester
,
D.
,
Venkatasubramanian
,
R.
,
Conner
,
B.
, and
Snyder
,
G. J. A. S. G. J.
, 2006, “
Embedded Thermoelectric Coolers for Semiconductor Hot Spot Cooling
,”
ITHERM 2006
, pp.
491
496
.
3.
Peng
,
W.
, and
Avram
,
B. -C.
, 2007, “
On-Chip Hot Spot Cooling Using Silicon Thermoelectric Microcoolers
,”
J. Appl. Phys.
0021-8979,
102
(
3
), p.
034503
.
4.
Sridhar
,
N.
,
Lofgreen
,
K.
,
Chau
,
D.
, and
Chrysler
,
G. A. C. G.
, 2006, “
Thin Film Thermoelectric Cooler Thermal Validation and Product Thermal Performance Estimation
,”
ITHERM 2006
.
5.
Bar-Cohen
,
A.
,
Arik
,
M.
, and
Ohadi
,
M.
, 2006, “
Direct Liquid Cooling of High Flux Micro and Nano Electronic Components
,”
Proc. IEEE
,
94
(
8
), pp.
1549
1570
. 0018-9219
6.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for Vlsi
,”
IEEE Electron Device Lett.
0741-3106,
2
(
5
), pp.
126
129
.
7.
Fedorov
,
A. G.
, 2007, “
Fluid-to-Fluid Spot-to-Spreader Heat Management Devices and Systems and Methods of Managing Heat
,” U.S. Patent Application No. 20090040716, SN 874971.
8.
Lasance
,
C. J. M.
, and
Simons
,
R. E.
, 2005, “
Advances in High-Performance Cooling for Electronics
,”
Electronics Cooling
,
11
, available at: http://electronics-cooling.com/articles/2005/2005_nov_phphttp://electronics-cooling.com/articles/2005/2005_nov_php.
9.
Oh
,
K. W.
, and
Ahn
,
C. H.
, 2006, “
A Review of Microvalves
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
R13
R39
. 0960-1317
10.
International Technology Roadmap for Semiconductors 2006 Update, 2006.
11.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
, 1992, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
(
5
), pp.
832
842
.
12.
Liu
,
D.
, and
Garimella
,
S. V.
, 2004, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
1
), pp.
65
72
.
13.
Kleiner
,
M. B.
,
Kuhn
,
S. A.
, and
Haberger
,
K.
, 1995, “
High Performance Forced Air Cooling Scheme Employing Microchannel Heat Exchangers
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
(
4
), pp.
795
804
.
14.
Copeland
,
D.
, 2000, “
Optimization of Parallel Plate Heatsinks for Forced Convection
,”
16th IEEE SEMI-THERM Symposium
.
15.
Gnielinski
,
V.
, 1976, “
New Correlations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
16.
Qu
,
W.
, and
Mudawar
,
I.
, 2005, “
A Systematic Methodology for Optimal Design of Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
127
, pp.
381
390
.
17.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convective Boiling and Condensation
,
Oxford University Press
,
Oxford
.
18.
Sun
,
H.
,
Ma
,
C. F.
, and
Chen
,
Y. C.
, 1998, “
Prandtl Number Dependence of Impingement Heat Transfer With Circular Free-Surface Liquid Jets
,”
Int. J. Heat Mass Transfer
,
41
(
10
), pp.
1360
1363
. 0017-9310
19.
Chiriac
,
V. A.
, and
Ortega
,
A.
, 2002, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
6
), pp.
1237
1248
.
20.
Fabbri
,
M.
, and
Dhir
,
V. K.
, 2005, “
Optimized Heat Transfer for High Power Electronic Cooling Using Arrays of Microjets
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
760
769
.
21.
Royne
,
A.
, and
Dey
,
C. J.
, 2006, “
Effect of Nozzle Geometry on Pressure Drop and Heat Transfer in Submerged Jet Arrays
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
800
804
. 0017-9310
22.
Meyer
,
M. T.
,
Mudawar
,
I.
,
Boyack
,
C. E.
, and
Hale
,
C. A.
, 2006, “
Single-Phase and Two-Phase Cooling With an Array of Rectangular Jets
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
17
29
. 0017-9310
23.
Gurrum
,
S. P.
,
Suman
,
S. K.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
, 2004, “
Thermal Issues in Next-Generation Integrated Circuits
,”
IEEE Trans. Device Mater. Reliab.
1530-4388,
4
(
4
), pp.
709
714
.
24.
Bergles
,
A. E.
,
Lienhard
,
J. H.
,
Kendall
,
G. E.
, and
Griffith
,
P.
, 2003, “
Boiling and Evaporation in Small Diameter Channels
,”
Heat Transfer Eng.
0145-7632,
24
(
1
), pp.
18
40
.
25.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
15
), pp.
2737
2753
.
You do not currently have access to this content.