Thermal conductance and loss of pressure are among the most relevant parameters based on which a heat exchanger has to be chosen. Starting from this observation this study treated and compared the performances of different exchanging systems, always in condition of forced convection of air in laminar flow. The study parameters were two fin shapes, four modules (shapes), and four duct geometries (depending on the parameter shape ratio, defined in Sec. 3). The approach chosen was that of Bejan’s Constructal theory numerically implemented by the finite element code COMSOL MULTIPHYSICS. The results showed the importance of considering not the heat removing performance alone as a decisional parameter and proved that the “classic” I-shaped finned systems very often are not the best performing ones, while optimized Y profiles may offer better perspectives. Having demonstrated the relevance of the present approach, future developments of this research will have to put together the different evaluation criteria presented in an only performance parameter.

1.
Sundèn
,
B.
, and
Heggs
,
P. J.
, 2000,
Recent Advances in Analysis of Heat Transfer for Fin Type Surfaces
,
WIT Press
,
Southampton, UK/Boston, MA
.
2.
Alebrahim
,
A.
, and
Bejan
,
A.
, 1999, “
Constructal Trees of Circular Fins for Conductive and Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
19
), pp.
3585
3597
.
3.
Nuntaphan
,
A.
,
Vithayasai
,
S.
,
Kiatsiriroat
,
T.
, and
Wang
,
C. -C.
, 2007, “
Effect of Inclination Angle on Free Convection Thermal Performance of Louver Finned Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
1–2
), pp.
361
366
.
4.
Ben-Nakhi
,
A.
, and
Chamkha
,
A. J.
, 2007, “
Conjugate Natural Convection in a Square Enclosure With Inclined Thin Fin of Arbitrary Length
,”
Int. J. Therm. Sci.
1290-0729,
46
(
5
), pp.
467
478
.
5.
Wen
,
T.
,
Xu
,
F.
, and
Lu
,
T. J.
, 2007, “
Structural Optimization of Two-Dimensional Cellular Metals Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
13–14
), pp.
2590
2604
.
6.
Zhang
,
L. -Z.
, 2007, “
Laminar Flow and Heat Transfer in Plate-Fin Triangular Ducts in Thermally Developing Entry Region
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
7–8
), pp.
1637
1640
.
7.
Lorenzini
,
G.
, 1999, “
A Numerical Approach to the Problem of Conjugate Heat Transfer in Turbulent Forced Convection for a Fluid in a Pipe With Internal Longitudinal Fins
,”
Proceedings of the First International Conference on Engineering Thermophysics
, Beijing, China, pp.
194
203
.
8.
Horvat
,
A.
, and
Catton
,
I.
, 2003, “
Numerical Technique for Modeling Conjugate Heat Transfer in an Electronic Device Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
12
), pp.
2155
2168
.
9.
Biserni
,
C.
,
Fichera
,
A.
,
Guglielmino
,
D.
,
Lorenzini
,
E.
, and
Pagano
,
A.
, 2006, “
A Non-Linear Approach for the Analysis and Modelling of the Dynamics of Systems Exhibiting Vapotron Effect
,”
Int. J. Heat Mass Transfer
0017-9310,
49
(
7–8
), pp.
1264
1273
.
10.
Kandasamy
,
R.
, and
Subramanyam
,
S.
, 2005, “
Application of Computational Fluid Dynamics Simulation Tools for Thermal Characterization of Electronic Packages
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
15
(
1
), pp.
61
72
.
11.
Bar-Cohen
,
A. D.
, and
Kraus
,
A.
, 1988,
Advances in Thermal Modelling of Electronic Components and Systems
, Vol.
4
,
ASME
,
New York
.
12.
Marthinuss
,
J.
,
Hall
,
G.
, and
Grumman
,
N.
, 2004, “
Air Cooled Compact Heat Exchanger Design for Electronics Cooling
,”
Electronics Cooling
,
10
(
1
), www.electronics-cooling.com/articles/2004/2004_february_a3.phpwww.electronics-cooling.com/articles/2004/2004_february_a3.php
13.
Minichiello
,
A.
, 2003, “
Effective Thermal Design for Electronic Systems
,”
Electronics Cooling
,
9
(
2
), www.electronics-cooling.com/articles/2003/2003_may_a1.phpwww.electronics-cooling.com/articles/2003/2003_may_a1.php
14.
Jubran
,
B. A.
,
Swiety
,
S. A.
, and
Hamdan
,
M. A.
, 1996, “
Convective Heat Transfer and Pressure Drop Characteristics of Various Array Configurations to Simulate the Cooling of Electronic Modules
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
16
), pp.
3519
3529
.
15.
Schmidt
,
R.
, 2004, “
Challenges in Electronic Cooling—Opportunities for Enhanced Thermal Management Techniques—Microprocessor Liquid Cooled Minichannel Heat Sink
,”
Heat Transfer Eng.
0145-7632,
25
(
3
), pp.
3
12
.
16.
Webb
,
R. L.
, 2005, “
Next Generation Devices for Electronic Cooling With Heat Rejection to Air
,”
ASME J. Heat Transfer
0022-1481,
127
(
1
), pp.
2
10
.
17.
Lall
,
P.
,
Pecht
,
M.
, and
Hakim
,
E.
, 1997,
Influence of Temperature on Microelectronics and System Reliability: A Physics of Failure Approach
,
CRC
,
New York
.
18.
Biserni
,
C.
,
Rocha
,
L. A. O.
,
Stanescu
,
G.
, and
Lorenzini
,
E.
, 2007, “
Constructal H-Shaped Cavities According to Bejan’s Theory
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
11–12
), pp.
2132
2138
.
19.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
Numerical Analysis on Heat Removal From Y-Shaped Fins: Efficiency and Volume Occupied for a New Approach to Performance Optimisation
,”
Int. J. Therm. Sci.
1290-0729,
46
(
6
), pp.
573
579
.
20.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
A CFD Application to Optimise T-Shaped Fins: Comparisons With Constructal Theory’s Results
,”
ASME J. Electron. Packag.
1043-7398,
129
(
3
), pp.
324
327
.
21.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2008, “
Numerical Heat Transfer Optimization in Modular Systems of Y-Shaped Fins
,”
ASME J. Heat Transfer
0022-1481,
130
(
8
), p.
081801
.
22.
Lorenzini
,
G.
, and
Moretti
,
S.
, 2007, “
Numerical Analysis of Heat Removal Enhancement With Extended Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
3–4
), pp.
746
755
.
23.
Bejan
,
A.
, and
Almogbel
,
M.
, 2000, “
Constructal T-Shaped Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
12
), pp.
2101
2115
.
24.
2007, COMSOL MULTIPHYSICS, version 3.3, Users’ Manuals.
You do not currently have access to this content.