An important design objective that is unique to hand-held units is the need to constrain two temperatures: the maximum temperature of the electronic components and the maximum skin temperature of the hand-held unit. The present work identifies and evaluates, through parametric modeling and experiments, the passive thermal energy storage volume characteristics and phase change material composite properties that are most suitable for thermal control of small form-factor, high power-density, hand-held electronics. A one-dimensional transient analytical model, based on an integral heat balance, is formulated and benchmarked. The model accurately simulates the heat storage/recovery process in a semi-infinite, “dry” phase change material slab. Dimensional analysis identifies the time and temperature metrics and nondimensional parameters that describe the heat storage/release process. Parametric analysis illustrates how changes in these nondimensional parameters affect thermal energy storage volume thermal response.

References

1.
Font
,
J.
,
Muntasell
,
J.
,
Cesari
,
E.
, and
Pons
,
J.
, 1997, “
Solid-State Mechanical Alloying of Plastic Crystals
,”
J. Mater. Res.
,
12
, pp.
3254
3259
.
2.
Gao
,
W.
,
Lin
,
W.
,
Liu
,
T.
, and
Xia
,
C.
, 2007, “
An Experimental Study on the Heat Storage Performance of Polyalcohols NPG, TAM, PE and AMPD and Their Mixtures a Solid-Solid Phase-Change Materials for Solar Energy Applications
,”
Int. J. Green Energy
,
4
, pp.
301
311
.
3.
Chandra
,
D.
,
Barrett
,
S.
, and
Benson
,
D. K.
, 1989, “
X-Ray Diffraction Studies of Solid Solutions of Pentaglycerine-Neopentylglycol
,”
Adv. X-Ray Anal.
,
32
, pp.
609
616
.
4.
Chandra
,
D.
,
Ding
,
W.
, and
Lynch
,
R.
, 1991, “
Phase Transitions in Plastic Crystals
,”
J. Less-Common Met.
,
168
, pp.
159
167
.
5.
Zheng
,
N.
, and
Wirtz
,
R. A.
, 2004, “
A Hybrid Thermal Energy Storage Device, Part 1: Design Methodology
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
1
7
.
6.
Zheng
,
N.
, and
Wirtz
,
R. A.
, 2004, “
A Hybrid Thermal Energy Storage Device, Part 2: Thermal Performance Figures of Merit
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
8
13
.
7.
Bauer
,
C. A.
, and
Wirtz
,
R. A.
, 2000, “Thermal Characteristics of a Compact, Passive Thermal Energy Storage Device,” ASME IMECE, Orlando, FL, Paper No. 2-e-2-1.
8.
Hawlader
,
M. N. A.
,
Uddin
,
M. S.
, and
Zhu
,
H. J.
, 2002, “
Encapsulated Phase Change Materials for Thermal Energy Storage: Experiments and Simulation
,”
Int. J. Energy Res.
,
26
, pp.
159
171
.
9.
Xing
,
L.
,
Hongyan
,
L.
,
Shujun
,
W.
,
Lu
,
Z.
, and
Hua
,
C.
, 2006, “
Preparation and Thermal Properties of Form Stable Paraffin Phase Change Material Encapsulation
,”
Energy Convers. Manage.
,
47
, pp.
2515
2522
.
10.
Wang
,
L. Y.
,
Tsai
,
P. S.
, and
Yang
,
Y. M.
, 2006, “
Preparation of Silica Microspheres Encapsulating Phase Change Material by Sol-Gel Method in O/W Emulsion
,”
J. Microencapsul.
,
23
(
1
), pp.
3
14
.
11.
Syed
,
M. T.
,
Kumar
,
S.
,
Moallemi
,
K.
, and
Naraghi
,
M. N.
, 1997, “
Thermal Storage Using Form-Stable Phase-Change Materials
,”
ASHRAE J.
,
39
, pp.
45
50
.
12.
Xiao
,
M.
,
Feng
,
B.
, and
Gong
,
K.
, 2001, “
Thermal Performance of a High Conductive Shape-Stabilized Thermal Storage Material
,”
Sol. Energy Mater. Sol. Cells
,
69
, pp.
293
296
.
13.
El-Genk
,
M. S.
, and
Cronenberg
,
A. W.
, 1979, “
Solidification in a Semi-Infinite Region With Boundary Conditions of the Second Kind: An Exact Solution
,”
Lett. Heat Mass Transfer
,
6
, pp.
321
327
.
14.
Goodman
,
T. R.
, 1957, “
The Heat Balance Integral and Its Application to Problems Involving a Change of Phase
,”
Trans. ASME
,
80
, pp.
335
342
.
15.
El-Genk
,
M. S.
, and
Cronenberg
,
A. W.
, 1979, “
Some Improvements to the Solution of Stefan-Like Problems
,”
Int. J. Heat Mass Transfer
,
22
, pp.
167
170
.
16.
Chakraborty
,
S.
, and
Dutta
,
P.
, 2003, “
Analytical Solutions for Heat Transfer During Cyclic Melting and Freezing of a Phase Change Material Used in Electronic or Electrical Packaging
,”
ASME J. Electron. Packag.
,
125
, pp.
126
133
.
17.
Zalba
,
B.
,
Marin
,
J.
,
Cabeza
,
L.
, and
Mehling
,
H.
, 2003, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
, pp.
251
283
.
18.
Wirtz
,
R. A.
,
Zhou
,
T.
, and
Jiang
,
Y.
, 2009, “
Thermal and Mechanical Characteristics of a Multi-Functional Thermal Energy Storage Structure
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
1
), pp.
53
64
.
19.
Yaquinto
,
M.
, and
Wirtz
,
R. A.
, 2009, “Transition Temperature Stratified Thermal Energy Storage Systems Applied to on-Demand Cooling of High Power-Density Hand-Held Electronics,” Proceedings of the ASME 2009 InterPACK, Paper No. InterPack2009-89237.
20.
Mills
,
A. F.
, 1999,
Heat Transfer
, 2nd ed.,
Prentice-Hall
,
New Jersey
.
21.
Arpaci
,
V. S.
, 1966,
Conduction Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
22.
Myers
,
G.
, 1971,
Analytical Methods in Conduction Heat Transfer
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.