In this paper, the finite volume method (FVM) is used for the simulation of flip chip underfill process by considering non-Newtonian flow between two parallel plates that emulate the silicon die and the substrate. 3D model of two parallel plates of size 12.75 mm × 9.5 mm with gap heights of 5 μm, 15 μm, 25 μm, 35 μm, 45 μm, and 85 μm are developed and simulated by computational fluid dynamic (CFD) code, fluent 6.3.26. The flow is modeled by using power law model and volume of fluid (VOF) technique is applied for flow front tracking. The effect of change in height of the gap between the plates on the underfill process is mainly studied in the present work. It is observed that the gap height has significant influence on the melt filling time and pressure drop, as the gap height decreases filling time and pressure drop increase. The simulation results are compared with previous experimental results and found in good conformity.

References

1.
Han
,
S.
, and
Wang
,
K. K.
, 1997, “
Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip Chips
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part B
,
20
(
4
), pp.
424
433
.
2.
Fine
,
P.
,
Cobb
,
B.
, and
Nguyen
,
L.
, 2000, “
Flip Chip Underfill Flow Characteristics and Prediction
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
3
), pp.
420
427
.
3.
Young
,
W. B.
, and
Yang
,
W. L.
, 2002, “
Underfill Viscous Flow Between Parallel Plates and Solder Bumps
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
695
700
.
4.
Young
,
W. B.
, 2004, “
Capillary Impregnation Into Cylinder Banks
,”
J. Colloid Interface Sci.
,
273
, pp.
576
580
.
5.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D.
, 2005, “
An Analytical Model for Predicting the Underfill Flow Characteristics in Flip Chip Packaging
,”
IEEE Trans. Adv. Packag.
,
28
(
3
), pp.
481
487
.
6.
Khor
,
C. Y.
,
Abdul Mujeebu
,
M.
,
Abdullah
,
M. Z.
, and
Che Ani
,
F.
, 2010, “
Finite Volume Based CFD Simulation of Pressurized Flip Chip Underfill Encapsulation Process
,”
Microelectron. Reliab.
,
50
(
1
), pp.
98
105
.
7.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D.
, 2008, “
Experimental Verification of Models for Underfill Flow Driven by Capillary Forces in Flip Chip Packaging
,”
Microelectron. Reliab.
,
48
, pp.
425
430
.
8.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D.
, 2007, “
Recent Advances in Modeling the Underfill Process in Flip Chip Packaging
,”
Microelectron. J.
,
38
, pp.
67
75
.
9.
Wan
,
J. W.
,
Zhang
,
W. J.
, and
Bergstrom
,
D.
, 2009, “
Numerical Modeling for the Underfill Flow in Flip-Chip Packaging
,”
IEEE Trans. Adv. Electron. Packag.
,
32
(
2
), pp.
227
234
.
10.
Wan
,
J
, 2005, “
Analysis and Modeling of Underfill Flow Driven by Capillary Action in Flip-Chip Packaging
,” Ph.D. thesis, Department of Mechanical Engineering, University of Saskatchewan, Saskatoon.
11.
Nguyen
,
L.
,
Quentin
,
C.
,
Fine
,
P.
,
Cobb
,
B.
,
Bayyuk
,
S.
,
Yang
,
H.
, and
Bistrup-Allen
,
S. A.
, 1999, “
Underfill of Flip Chip on Laminates: Simulation and Validation
,”
IEEE Trans. Compon. Packag. Technol.
,
22
(
2
), pp.
168
176
.
12.
Young
,
W. B.
, 2010, “
Modelling of a Non-Newtonian Flow Between Parallel Plates in a Flip Chip Encapsulation
,”
Microelectron. Reliab.
,
50
(
7
), pp.
995
999
.
13.
Shen
,
Y. K.
,
Huang
,
S. T.
,
Chen
,
C. J.
, and
Yu
,
S.
, 2006, “
Study on Flow Visualization of Flip Chip Encapsulation Process for Numerical Simulation
,”
Int. Commun. Heat Mass Transfer
,
33
, pp.
151
157
.
14.
Hashimoto
,
T.
,
Shin-ichiro
,
T.
,
Morinishi
,
K.
, and
Satofuka
,
N.
, 2008, “
Numerical Simulation of Conventional Capillary Flow and No-Flow Underfill in Flip Chip Packaging
,”
Comput. Fluids
,
37
, pp.
520
523
.
15.
Kulkarni
,
V. M.
,
Seetharamu
,
K. N.
,
Abdul Azid
,
I.
,
Aswatha Narayana
,
P. A.
, and
Abdul Quadir
,
G.
, 2006, “
Numerical Simulation of Underfill Encapsulation Process Based on Characteristic Split Method
,”
Int. J. Numer. Methods Eng.
,
66
, pp.
1658
1671
.
16.
Khor
,
C. Y.
,
Abdul Mujeebu
,
M.
,
Abdullah
,
M. Z.
, and
Che Ani
,
F.
, 2010, “
FVM Based Numerical Study on the Solder Bump Arrangement on Capillary Driven Flip Chip Underfill Process
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
281
286
.
17.
Modeling Multiphase Flow, fluent Documentation, Chap. 23.
You do not currently have access to this content.