Abstract

A single-feed circularly polarized antenna with electromagnetic band gap (EBG) has been developed for the Industrial, Scientific, and Medical (ISM) bands. The proposed antenna features a square patch with eight slits on each side and corner, along with a cross-slot in the middle. To prevent surface wave excitation caused by the patch antenna's thick substrate, new grounded like-mushroom EBG structures will surround the antenna. The frequency band gap characteristics of the EBG unit cells have been optimized at 5.8 GHz. A row of EBGs squares is 4.73 mm (0.063λo) away from the antenna square patch and surrounds it on all four sides. The proposed mushroom-like structure design improves the antenna's directivity by 43.31%, gain by 32.93%, reflection coefficient by 93%, and radiation efficiency by 35.22%. This topology enables a wide variety of wireless communications applications. Computer simulation technologies (CSTs) were used to generate simulation figures for the proposed antenna, operating at 5.8 GHz. Furthermore, the new Like-Mushroom EBG antenna simulation, experimental results, and other reported works confirm that our approach meets the studied objectives regarding polarization purity, radiation efficiency, high directivity, and gain.

References

1.
Wang
,
H.
,
2006
, “
Dual-Resonance Monopole Antenna With Tuning Stubs
,”
IEE Proc.-Microwaves, Antennas Propag.
,
153
(
4
), pp.
395
399
.10.1049/ip-map:20050110
2.
Wang
,
H.
, and
Zheng
,
M.
,
2008
, “
Triple-Band Wireless Local Area Network Monopole Antenna
,”
Microwaves, Antennas Propag., IET
,
2
(
4
), pp.
367
372
.10.1049/iet-map:20070120
3.
Abedin
,
M. F.
, and
Ali
,
M.
,
2005
, “
Effects of EBG Reflection Phase Profiles on the Input Impedance and Bandwidth of Ultra-Thin Directional Dipoles
,”
IEEE Trans. Antennas Propag.
,
53
(
11
), pp.
3664
3672
.10.1109/TAP.2005.858584
4.
Buell
,
K.
,
Mosallaei
,
H.
, and
Sarabandi
,
K.
,
2007
, “
Metamaterial Insulator Enabled Superdirective Array
,”
Antennas Propag. IEEE Trans.
,
55
(
4
), pp.
1074
1085
.10.1109/TAP.2007.893373
5.
Lim
,
E. H.
, and
Leung
,
K. W.
,
2006
, “
Dual-Wideband Rectangular Dielectric Resonator Antenna for WLAN Communications
,”
Microwave Opt. Technol. Lett.
,
48
(
2
), pp.
378
380
.10.1002/mop.21355
6.
Lin
,
Y. F.
,
Chen
,
H. M.
,
Lin
,
C. Y.
, and
Pan
,
S. C.
,
2009
, “
Planar Inverted-L Antenna With a Dielectric Resonator Feed in a Mobile Device
,”
IEEE Trans. Antennas Propag.
,
57
(
10
), pp.
3342
3346
.10.1109/TAP.2009.2029379
7.
Iluz
,
Z.
,
Shavit
,
R.
, and
Bauer
,
R.
,
2004
, “
Microstrip Antenna Phased Array With Electromagnetic Bandgap Substrate
,”
IEEE Trans. Antennas Propag.
,
52
(
6
), pp.
1446
1453
.10.1109/TAP.2004.830252
8.
Al-Hasan
,
M. J.
,
Denidni
,
T. A.
, and
Sebak
,
A. R.
,
2015
, “
Millimeter-Wave Compact EBG Structure for Mutual Coupling Reduction Applications
,”
IEEE Trans. Antennas Propag.
,
63
(
2
), pp.
823
828
.10.1109/TAP.2014.2381229
9.
Matsugatani
,
K.
,
Tanaka
,
M.
,
Fukui
,
S.
,
Kim
,
W. H.
, and
Kim
,
M.
,
2005
, “
Surface Wave Distribution Over Electromagnetic Bandgap (EBG) and EBG Reflective Shield for Patch Antenna
,”
IEICE Trans.
,
E88-C
(
12
), pp.
2341
2349
.10.1093/ietele/e88-c.12.2341
10.
Chang
,
T. N.
,
Lin
,
J. M.
, and
Chen
,
Y. G.
,
2012
, “
A Circularly Polarized Ring-Antenna Fed by a Serially Coupled Square Slot-Ring
,”
IEEE Trans. Antennas Propag.
,
60
(
2
), pp.
1132
1135
.10.1109/TAP.2011.2173138
11.
Ning Chen
,
Z.
, and
Luk
,
K.-M.
,
2009
,
Antennas for Base Stations in Wireless Communications
,
McGraw-Hill
,
New York
, p.
9780071612883
.
12.
Sievenpiper
,
D.
,
Broas
,
R. F. J.
,
Alexopolous
,
N. G.
,
Yablonovitch
,
E.
, and
Zhang
,
L.
,
1999
, “
High-Impedance Electromagnetic Surfaces With a Forbidden Frequency Band
,”
IEEE Trans. Microwave Theory Tech.
,
47
(
11
), pp.
2059
2074
.10.1109/22.798001
13.
Kim
,
H.
,
Yeon
,
K.
,
Kim
,
W.
, and
Park
,
C. S.
,
2019
, “
Design and Implementation of Electromagnetic Band-Gap Embedded Antenna for Vehicle-to-Everything Communications in Vehicular Systems
,”
ETRI J.
,
41
(
6
), pp.
731
738
.10.4218/etrij.2017-0197
14.
Wissem
,
E. M.
,
Sfar
,
I.
,
Osman
,
L.
, and
Ribero
,
J.-M.
,
2021
, “
A Textile EBG-Based Antenna for Future 5G-IoT Millimeter-Wave Applications
,”
Electronics
,
10
(
2
), p.
154
.10.3390/electronics10020154
15.
Abdulhameed
,
M. K.
,
Isa
,
M. S. M.
,
Zakaria
,
Z.
,
Mohsin
,
M. K.
, and
Attiah
,
M. L.
,
2018
, “
Mushroom-Like EBG to Improve Patch Antenna Performance for C-Band Satellite Application
,”
Int. J. Electr. Comput. Eng.
,
8
(
5
), pp.
3875
3881
.10.11591/ijece.v8i5.pp3875-3881
16.
Wagih
,
M.
,
Hilton
,
G. S.
,
Weddell
,
A. S.
, and
Beeby
,
S.
,
2020
, “
Broadband Millimeter-Wave Textile-Based Flexible Rectenna for Wearable Energy Harvesting
,”
IEEE Trans. Microwave Theory Tech.
,
68
(
11
), pp.
4960
4972
.10.1109/TMTT.2020.3018735
17.
Hoque
,
A.
,
Islam
,
M. T.
, and
Almutairi
,
A. F.
,
2020
, “
Low-Profile Slotted Metamaterial Antenna Based on Bi Slot Microstrip Patch for 5G Application
,”
Sensors
,
20
(
11
), p.
3323
.10.3390/s20113323
18.
Nelaturi
,
S.
,
2021
, “
ENGTL Based Antenna for Wi-Fi and 5G
,”
Analog Integr. Circuits Signal Process.
,
107
(
1
), pp.
165
170
.10.1007/s10470-020-01766-y
19.
Iqbal
,
J.
,
Illahi
,
U.
,
Yasin
,
M. N. M.
,
Albreem
,
M. A.
, and
Akbar
,
M. F.
,
2022
, “
Bandwidth Enhancement by Using Parasitic Patch on Dielectric Resonator Antenna for Sub-6 GHz 5G NR Bands Application
,”
Alexandria Eng. J.
,
61
(
6
), pp.
5021
5032
.10.1016/j.aej.2021.09.049
20.
Desai
,
A.
,
Upadhyaya
,
T.
,
Patel
,
J.
,
Patel
,
R.
, and
Palandoken
,
M.
,
2020
, “
Flexible CPW Fed Transparent Antenna for WLAN and Sub-6 GHz 5G Applications
,”
Microwave Opt. Technol. Lett.
,
62
(
5
), pp.
2090
2103
.10.1002/mop.32287
21.
Kapoor
,
A.
,
Mishra
,
R.
, and
Kumar
,
P.
,
2020
, “
Compact Wideband Printed Antenna for Sub-6 GHz Fifth-Generation Applications
,”
Int. J. Smart Sens. Intell. Syst.
,
13
(
1
), pp.
1
10
.10.21307/ijssis-2020-033
You do not currently have access to this content.