Abstract

This paper focuses on the validation of a brazed plate heat exchanger (BPHE) model that acts as the condenser of a novel in-rack cooling loop. In the proposed system, the primary fluid enters as a saturated vapor, while the secondary fluid enters as a subcooled liquid flowing in a counterflow configuration. The model augments an existing general technique for simplicity and computational efficiency and is applied to the condensation of a low-pressure, environmentally friendly refrigerant, i.e., R1233zd(E). The model analyzes the heat transfer and pressure drop values of both fluids in the heat exchanger and uses these results to predict the heat exchanger duty and exit temperature and pressure of both fluids. The model predicts the values of fluid output properties along with heat exchanger duty to within 20% of experimental measurements. The validated model is then used to assess the magnitude of the heat transfer coefficient and friction factor attained on both fluid sides of the heat exchanger, including relatively uniform water-side heat transfer coefficient, a substantial (30%–80% of overall flow length) region of two-phase condensation, and a minimum refrigerant-side friction factor in the subcooled regime.

References

1.
Sarraf
,
K.
,
Launay
,
S.
,
El Achkar
,
G.
, and
Tadrist
,
L.
,
2015
, “
Local versus Global Heat Transfer and Flow Analysis of Hydrocarbon Complete Condensation in Plate Heat Exchanger Based on Infrared Thermography
,”
Int. J. Heat Mass Transf.
,
90
, pp.
878
893
.10.1016/j.ijheatmasstransfer.2015.07.036
2.
Sarraf
,
K.
,
Launay
,
S.
, and
Tadrist
,
L.
,
2016
, “
Analysis of Enhanced Vapor Desuperheating During Condensation Inside a Plate Heat Exchanger
,”
Int. J. Therm. Sci.
,
105
, pp.
96
108
10.1016/j.ijthermalsci.2016.03.001
3.
Cattelan
,
G.
,
Azzolin
,
M.
,
Diani
,
A.
,
Rossetto
,
L.
, and
Del Col
,
D.
,
2023
, “
Condensation Heat Transfer of Superheated Vapour of R1234ze(E) and R134a Inside a Brazed Plate Heat Exchanger
,”
J. Phys. Conf. Ser.
,
2509
(
1
), p.
012028
.10.1088/1742-6596/2509/1/012028
4.
Claesson
,
J.
,
2005
, “
Performance of Compat Brazed Plate Heat Exchanger Operating as a Condenser in Domestic Heat Pump System - An Experimental Investigation
,”
International Energy Agency Heat Pump Conference: Global Advances in Heat Pump Technology, Applications, and Markets, Heat Pumping Technologies
, Las Vegas, NV, May 30–June 2, Paper No. HPP-CONF8.https://etkhpcorderapi.extweb.sp.se/api/file/1009
5.
Tao
,
X.
, and
Infante Ferreira
,
C. A.
,
2019
, “
Heat Transfer and Frictional Pressure Drop During Condensation in Plate Heat Exchangers: Assessment of Correlations and a New Method
,”
Int. J. Heat Mass Transf.
,
135
, pp.
996
1012
.10.1016/j.ijheatmasstransfer.2019.01.132
6.
Longo
,
G. A.
,
Righetti
,
G.
, and
Zilio
,
C.
, Mar.
2015
, “
A New Computational Procedure for Refrigerant Condensation Inside Herringbone-Type Brazed Plate Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
82
, pp.
530
536
.10.1016/j.ijheatmasstransfer.2014.11.032
7.
Hayes
,
N. M.
, and
Amir
,
J.
,
2009
, “
Dynalene/Water Correlations to be Used for Condensation of CO2 in Brazed Plate Heat Exchangers
,”
ASHRAE Trans.
,
115
(
2
), pp.
599
616
.https://www.researchgate.net/publication/281365170_Dynalenewater_correlations_to_be_used_for_condensation_of_CO2_in_brazed_plate_heat_exchangers
8.
Zhang
,
J.
,
Kærn
,
M. R.
,
Ommen
,
T.
,
Elmegaard
,
B.
, and
Haglind
,
F.
,
2019
, “
Condensation Heat Transfer and Pressure Drop Characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a Plate Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
128
, pp.
136
149
.10.1016/j.ijheatmasstransfer.2018.08.124
9.
Jung
,
J. H.
,
Ko
,
Y. M.
, and
Kang
,
Y. T.
,
2021
, “
Condensation Heat Transfer Characteristics and Energy Conversion Performance Analysis for Low GWP Refrigerants in Plate Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
166
, p.
120727
.10.1016/j.ijheatmasstransfer.2020.120727
10.
Longo
,
G. A.
,
Zilio
,
C.
, and
Righetti
,
G.
,
2015
, “
Condensation of the Low GWP Refrigerant HFC152a Inside a Brazed Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
509
515
.10.1016/j.expthermflusci.2015.06.010
11.
Longo
,
G. A.
, and
Zilio
,
C.
,
2012
, “
HFO1234yf Condensation Inside A Brazed Plate Heat Exchanger
,”
International Refrigeration and Air Conditioning Conference
, West Lafayette, IN, July 16–19, p.
1172
.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2171&context=iracc
12.
Shon
,
B. H.
,
Jung
,
C. W.
,
Kwon
,
O. J.
,
Choi
,
C. K.
, and
Tae Kang
,
Y.
,
2018
, “
Characteristics on Condensation Heat Transfer and Pressure Drop for a Low GWP Refrigerant in Brazed Plate Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
122
, pp.
1272
1282
.10.1016/j.ijheatmasstransfer.2018.02.077
13.
Kwon
,
O. J.
,
Jung
,
J. H.
, and
Kang
,
Y. T.
,
2020
, “
Development of Experimental Nusselt Number and Friction Factor Correlations for Condensation of R-1233zd(E) in Plate Heat Exchangers
,”
Int. J. Heat Mass Transf.
,
158
, p.
120008
.10.1016/j.ijheatmasstransfer.2020.120008
14.
Rahman
,
M. M.
,
Bal
,
D.
,
Kariya
,
K.
, and
Miyara
,
A.
,
2023
, “
Experimental Analysis of Local Condensation Heat Transfer Characteristics of CF3I Inside a Plate Heat Exchanger
,”
Fluids
,
8
(
5
), p.
150
.10.3390/fluids8050150
15.
Kumar
,
B.
,
Soni
,
A.
, and
Singh
,
S. N.
,
2018
, “
Effect of Geometrical Parameters on the Performance of Chevron Type Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
91
, pp.
126
133
.10.1016/j.expthermflusci.2017.09.023
16.
Jafari
,
A.
,
Sadeghianjahromi
,
A.
, and
Wang
,
C.-C.
,
2022
, “
Experimental and Numerical Investigation of Brazed Plate Heat Exchangers – A New Approach
,”
Appl. Therm. Eng.
,
200
, p.
117694
.10.1016/j.applthermaleng.2021.117694
17.
Yong
,
J.
,
Ham
,
J.
,
Kwon
,
O.
, and
Cho
,
H.
,
2021
, “
Experimental Investigation of the Heat Transfer Characteristics of Plate Heat Exchangers Using LiBr/Water as Working Fluid
,”
Energies
,
14
(
20
), p.
6761
.10.3390/en14206761
18.
Panday
,
N. K.
, and
Singh
,
S. N.
,
2022
, “
Study of Thermo-Hydraulic Performance of Chevron Type Plate Heat Exchanger With Wire Inserts in the Channel
,”
Int. J. Therm. Sci.
,
173
, p.
107360
.10.1016/j.ijthermalsci.2021.107360
19.
Mutumba
,
A.
,
Coletti
,
F.
,
Reip
,
A.
,
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2023
, “
Experiments and Correlations for Single-Phase Convective Heat Transfer in Brazed Plate Heat Exchangers
,”
Heat Transf. Eng.
,
44
(
3
), pp.
211
231
.10.1080/01457632.2022.2049539
20.
Gut
,
J. A. W.
, and
Pinto
,
J. M.
,
2003
, “
Modeling of Plate Heat Exchangers With Generalized Configurations
,”
Int. J. Heat Mass Transf.
,
46
(
14
), pp.
2571
2585
.10.1016/S0017-9310(03)00040-1
21.
Picón-Núñez
,
M.
,
Polley
,
G. T.
, and
Jantes-Jaramillo
,
D.
,
2010
, “
Alternative Design Approach for Plate and Frame Heat Exchangers Using Parameter Plots
,”
Heat Transf. Eng.
,
31
(
9
), pp.
742
749
.10.1080/01457630903500874
22.
Pelletier
,
O.
,
Strömer
,
F.
, and
Carlson
,
A.
,
2005
, “CFD Simulation of Heat Transfer in Compact Brazed Plate Heat Exchangers,”
2005 ASHRAE Winter Conference
, Orlando, FL, Jan. 23–27, pp.
846
854
.https://iifiir.org/en/fridoc/cfd-simulation-of-heat-transfer-in-compact-brazed-plate-heat-exchangers-22928
23.
Gullapalli
,
V. S.
, and
Sundén
,
B.
,
2014
, “
CFD Simulation of Heat Transfer and Pressure Drop in Compact Brazed Plate Heat Exchangers
,”
Heat Transf. Eng.
,
35
(
4
), pp.
358
366
.10.1080/01457632.2013.828557
24.
Manigandan
,
N.
,
NaveenPrabh
,
V.
, and
Suresh
,
M.
, Jun.
2015
, “
Experimental Investigation of a Brazed Chevron Type Plate Heat Exchanger
,”
Int. J. Sci. Technol. Eng.
,
1
(
12
), pp.
1
7
.https://www.researchgate.net/publication/311455367_Experimental_Investigation_of_a_Brazed_Chevron_Type_Plate_Heat_Exchanger
25.
Gullapalli
,
V. S.
,
2017
, “
Modeling of Brazed Plate Heat Exchangers for ORC Systems
,” Presented at the
Energy Procedia
,
129
, pp.
443
450
.10.1016/j.egypro.2017.09.207
26.
Yoon
,
W.
, and
Jeong
,
J. H.
,
2017
, “
Development of a Numerical Analysis Model Using a Flow Network for a Plate Heat Exchanger With Consideration of the Flow Distribution
,”
Int. J. Heat Mass Transf.
,
112
, pp.
1
17
.10.1016/j.ijheatmasstransfer.2017.04.087
27.
Qiao
,
H.
,
Aute
,
V.
,
Lee
,
H.
,
Saleh
,
K.
, and
Radermacher
,
R.
,
2013
, “
A New Model for Plate Heat Exchangers With Generalized Flow Configurations and Phase Change
,”
Int. J. Refrig.
,
36
(
2
), pp.
622
632
.10.1016/j.ijrefrig.2012.11.020
28.
Eldeeb
,
R.
,
Aute
,
V.
, and
Radermacher
,
R.
,
2014
, “
A Model for Performance Prediction of Brazed Plate Condensers With Conventional and Alternative Lower GWP Refrigerants
,”
15th International Refrigeration and Air Conditioning Conference at Purdue
, West Lafayette, IN, July 15, Paper No. 2276.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=2425&context=iracc
29.
Yildiz
,
A.
, and
Ali Ersöz
,
M.
,
2015
, “
Theoretical and Experimental Thermodynamic Analyses of a Chevron Type Heat Exchanger
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
240
253
.10.1016/j.rser.2014.10.019
30.
Hisaka
,
2024
, “
Plate Heat Exchanger Design Calculation & Simulator
,” Hisaka, accessed Sept. 5, 2024, https://hisaka-asia.com/web-simulator
31.
Khalid
,
R.
,
Schon
,
S.
,
Amalfi
,
L.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
,
2024
, “
Characterization of a Rack-Level Thermosyphon-Based Cooling System
,”
ASME J. Electron. Packag.
,
146
(
3
), p.
031007
.10.1115/1.4064524
32.
Khalid
,
R.
,
Youssef
,
E.
,
Amalfi
,
R. L.
,
Ortega
,
A.
, and
Wemhoff
,
A. P.
, Nov.
2023
, “
Validation and Application of a Finned Tube Heat Exchanger Model for Rack-Level Cooling
,”
ASME J. Electron. Packag.
,
146
(
2
), p.
021005
.10.1115/1.4063252
33.
Khalid
,
R.
,
Amalfi
,
R. L.
, and
Wemhoff
,
A. P.
,
2021
, “
Rack-Level Thermosyphon Cooling and Vapor-Compression Driven Heat Recovery: Compressor Model
,”
ASME
Paper No. IPACK2021-73269.10.1115/IPACK2021-73269
34.
Palm
,
B.
, and
Claesson
,
J.
,
2005
, “
Plate Heat Exchangers, Calculation Methods for Single- and Two-Phase Flow
,”
ASME
Paper No. ICMM2005-75092.10.1115/ICMM2005-75092
35.
Ayub
,
Z. H.
,
2003
, “
Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,”
Heat Transf. Eng.
,
24
(
5
), pp.
3
16
.10.1080/01457630304056
36.
Khalid
,
R.
,
Amalfi
,
R. L.
, and
Wemhoff
,
A. P.
,
2021
, “
Rack-Level Thermosyphon Cooling and Vapor-Compression Driven Heat Recovery: Condenser Model
,”
ASME
Paper No. IPACK2021-73270.10.1115/IPACK2021-73270
37.
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2018
, “
Two-Phase Flow Simulations Within Plate Heat Exchangers
,”
Presented at the 17th Intersociety Conference on Thermal and Thermomechanical Phenomenon in Electronic Systems (ITherm)
, San Diego, CA, May 28–June 1, pp.
487
496
.10.1109/ITHERM.2018.8419518
38.
Kirillov
,
P. L.
, and
Ninokata
,
H.
,
2017
, “
Heat Transfer in Nuclear Thermal Hydraulics
,”
Therm.-Hydraul. Water Cool. Nucl. React.
, pp.
357
492
. 10.1016/B978-0-08-100662-7.00007-5
39.
Kumar
,
H.
,
1984
, “
The Plate Heat Exchanger: Construction & Design
,”
Inst. Chem. Eng. Symp. Ser.
,
2
(
86
), pp.
1275
1288
.10.1016/B978-0-85295-175-0.50054-0
40.
Yan
,
Y.-Y.
,
Lio
,
H.-C.
, and
Lin
,
T.-F.
,
1999
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Plate Heat Exchanger
,”
Int. J. Heat Mass Transf.
,
42
(
6
), pp.
993
1006
.10.1016/S0017-9310(98)00217-8
41.
Vakili-Farahani
,
F.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2015
, “
Two-Phase Heat Transfer and Pressure Drop Within Plate Heat Exchangers
,”
Encyclopedia of Two-Phase Heat Transfer and Flow II
, World Scientific, Singapore, pp.
145
215
.
42.
Huang
,
J.
,
Sheer
,
T. J.
, and
Bailey-McEwan
,
M.
,
2012
, “
Heat Transfer and Pressure Drop in Plate Heat Exchanger Refrigerant Evaporators
,”
Int. J. Refrig.
,
35
(
2
), pp.
325
335
.10.1016/j.ijrefrig.2011.11.002
43.
Omega Engineering, Inc.
, 2007, “
Omega Temperature Measurement Handbook
,” 6th ed., Omega Engineering, Inc., Norwalk, CT.
44.
Frei
,
M.
,
Hischier
,
I.
,
Deb
,
C.
,
Sigrist
,
D.
, and
Schlueter
,
A.
,
2021
, “
Impact of Measurement Uncertainty on Building Modeling and Retrofitting Decisions
,”
Front. Built Environ.
,
7
, Article No. 675913.10.3389/fbuil.2021.675913
45.
ASME,
2006
, “Test Uncertainty,” ASME, New York, Report No. PTC-19.1.
46.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
47.
Mondéjar
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans -1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)): Vapor Pressure, (p, ρ, T) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
48.
Perkins
,
R. A.
,
Huber
,
M. L.
, and
Assael
,
M. J.
,
2017
, “
Measurement and Correlation of the Thermal Conductivity of Trans -1-Chloro-3,3,3-Trifluoropropene (R1233zd(E))
,”
J. Chem. Eng. Data
,
62
(
9
), pp.
2659
2665
.10.1021/acs.jced.7b00106
49.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,
FORTRAN, National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg
, MD. 10.18434/T4/1502528
50.
Kondou
,
C.
,
Nagata
,
R.
,
Nii
,
N.
,
Koyama
,
S.
, and
Higashi
,
Y.
,
2015
, “
Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E)
,”
Int. J. Refrig.
,
53
, pp.
80
89
.10.1016/j.ijrefrig.2015.01.005
You do not currently have access to this content.