This study was directed to understand the coupling effects of the noncircular geometry of the burner and a crossflow on the combustion of gas jets. This paper compares the characteristics of turbulent propane jet flames from circular (diameter=0.45 cm) and elliptic (major axis/minor axis=3) burners of equivalent exit area in a crossflow. The elliptic burner was oriented with its major axis or minor axis aligned with the crossflow. Experiments were conducted in a wind tunnel provided with optical and probe access and capable of wind speeds up to 12.5 m/s. The burners were fabricated with metal tubes. Instrumentation included a Pt-Pt/13% Rh thermocouple, a quartz-probe gas sampling system, chemiluminescent and nondispersive infrared analyzers, a video-recorder, and a computer data acquisition system. The measurements consisted of the upper and lower limits of jet velocity for a stable flame, flame configuration, and visible length. Flame structure data including temperature profiles and concentration profiles of CO2,O2, CO, and NO were obtained in a two-zone flame configuration (at jet to crossflow momentum flux ratio=0.11), where a planar recirculation exists in the wake of the burner tube followed by an axisymmetric tail. The relative emission indicators of CO and NO were estimated from the composition data. Results show that the upper and lower limits of the fuel jet velocity increase with the crossflow velocity for all burners, and the rate of increase is highest for the elliptic burner with its minor axis aligned with the crossflow. That burner configuration also produces the longest flame. The relative emission indicators show that the CO production is lower and NO production is higher with elliptic burners than with circular burners in crossflow.

1.
Brzustowski
,
T. A.
,
1977
, “
Hydrocarbon Turbulent Diffusion Flame in Subsonic Crossflow,” AIAA 15th Aerospace Sciences Meeting
,
AIAA Pap.
, Reston, VA, Paper 77-22.
2.
Huang, R. F., 1987, “The Structure and Stability of Nonpremixed Gas Jet Flames,” Ph.D. thesis, School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK.
3.
Pratte, B. D., and Baines, W. D., 1967, “Profiles of the Round Turbulent Jet in a Crossflow,” Proc. A.S.C.E. Vol. HY6, pp. 53–64.
4.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure, and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.
5.
Eiff
,
O. L.
, and
Keffer
,
J. F.
,
1997
, “
On the Near-Wake Region of an Elevated Turbulent Jet in a Crossflow
,”
J. Fluid Mech.
,
333
, pp.
161
195
.
6.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Crossflow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
7.
Kalghatgi
,
G. T.
,
1981
, “
Blowout Stability of Gaseous Jet Diffusion Flames, Part 2, Effects of Cross-wind
,”
Combust. Sci. Technol.
,
26
, pp.
241
244
.
8.
Kalghatgi
,
G. T.
,
1983
, “
The Visible Shape and Size of a Turbulent Hydrocarbon Jet Diffusion Flame in a Cross-Wind
,”
Combust. Sci. Technol.
,
52
, pp.
91
106
.
9.
Brzustowski
,
T. A.
,
Gollahalli
,
S. R.
, and
Sullivan
,
H. F.
,
1975
, “
The Turbulent Hydrogen Diffusion Flame in a Cross-Wind
,”
Combust. Sci. Technol.
,
10
, pp.
59
69
.
10.
Brzustowski, T. A., Gollahalli, S. R., Gupta, M. P., Kaptein, M., and Sullivan, H. F., 1975, “Radiant Heating from Flares,” ASME Paper No. 75-HT-4.
11.
Botros, P. E., and Brzustowski, T. A., 1978, “An Experimental and Theoretical Study of the Turbulent Diffusion Flame in Crossflow,” Seventeenth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 389–398.
12.
Rao
,
V. K.
, and
Brzustowski
,
T. A.
,
1982
, “
Tracer Studies of Jets and Diffusion Flames in Crossflow
,”
Combust. Sci. Technol.
,
27
, pp.
229
239
.
13.
Gollahalli
,
S. R.
,
Brzustowski
,
T. A.
, and
Sullivan
,
H. F.
,
1975
, “
Characteristics of a Turbulent Propane Diffusion Flame in a Cross-Wind
,”
Trans. C. S. M. E.
,
3
, pp.
205
214
.
14.
Gollahalli
,
S. R.
,
1978
, “
Aerodynamic and Diluent Effects on the Emission of Nitrogen Oxides from Hydrocarbon Diffusion Flames
,”
Can. J. Chem. Eng.
,
56
, pp.
510
514
.
15.
Huang, R. F., Savas, O., and Gollahalli, S. R., 1992, “Flow Field in the near-Burner Region of a Partially Lifted Turbulent Gas Jet Flame in a Crossflow,” ASME Vol. HTD-223, pp. 105–110.
16.
Gollahalli
,
S. R.
, and
Nanjundappa
,
B.
,
1995
, “
Burner-Wake Stabilized Gas Jet Flames in a Crossflow
,”
Combust. Sci. Technol.
,
109
, pp.
327
346
.
17.
Huang, R. F., Savas, O., and Gollahalli, S. R., 1995, “Turbulence Characteristics in the Flow Field of a Nonpremixed Gas Jet Flame in a Crossflow,” ASME Vol. PD-66, pp. 11–20.
18.
Savas
,
O.
,
Huang
,
R. F.
, and
Gollahalli
,
S. R.
,
1997
, “
Structure of the Flow Field of a Nonpremixed Gas Jet Flame in a Crossflow
,”
ASME J. Energy Resour. Technol.
,
119
, pp.
137
144
.
19.
Goh
,
S. F.
, and
Gollahalli
,
S. R.
,
2000
, “
Effects of Pilot Flame Stabilization on Gas Jet Flames in a Crossflow
,”
AIAA Pap.
, 2000-0592.
20.
Goh, S. F., Kusadomi, S., and Gollahalli, S. R., 2001, “Effects of Cross-Wind on Smoke-Point Flow Rate of Nitrogen-Diluted Hydrocarbon Fuel,” International Joint Power Generation Conference, New Orleans, LA, June 4–7, ASME Paper JPGC 2001/FACT-19097.
21.
Huang
,
R. F.
, and
Chang
,
J. M.
,
1994
, “
Coherent Structures in Combusting Jet in Cross Flow
,”
AIAA J.
,
32
, pp.
1120
1125
.
22.
Huang
,
R. F.
, and
Chang
,
J. M.
,
1994
, “
The Stability and Visualized Flame and Flow Structures of a Combusting Jet in Crossflow
,”
Combust. Flame
,
98
, pp.
267
278
.
23.
Huang
,
R. F.
, and
Yang
,
M. J.
,
1996
, “
Thermal and Concentration Fields of Burner-Attached Jet Flames in Crossflow
,”
Combust. Flame
,
105
, pp.
211
224
.
24.
Huang
,
R. F.
, and
Wang
,
S. M.
,
1999
, “
Characteristic Flow Modes of Wake-Stabilized Jet Flames in a Transverse Air Stream
,”
Combust. Flame
,
117
, pp.
59
77
.
25.
Bourguignon
,
E.
,
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
1999
, “
The Use of a Closed Loop Wind Tunnel for Measuring the Combustion Efficiency of Flames in a Crossflow
,”
Combust. Flame
,
119
, pp.
319
334
.
26.
Johnson
,
M. R.
, and
Kostiuk
,
L. W.
,
2000
, “
Efficiencies of Low Momentum Jet Diffusion Flames in Crosswinds
,”
Combust. Flame
,
123
, pp.
189
200
.
27.
Majeski, A. J., Wilson, D. J., and Kostiuk, L., 1999, “Local Maximum Flame Length of Flares in a Cross-Wind,” presented in Spring Technical Meeting, Combustion Institute, Canadian Section, Edmonton, Alberta, May 16–19.
28.
Hasselbrink, Jr., E. F., and Mungal, M. G., 1998, “Observations on the Stabilization Region of Lifted Nonpremixed Methane Transverse Jet Flames,” Twenty-Seventh Symposium (Int) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1167–1173.
29.
Brzustowski
,
T. A.
,
1976
, “
Flaring in Energy Industry
,”
Prog. Energy Combust. Sci.
,
2
, pp.
129
141
.
30.
Bandaru
,
R.
, and
Turns
,
S. R.
,
2000
, “
Turbulent Jet Flames in a Crossflow: Effects of Some Jet, Crossflow and Pilot Flame Parameters on Emissions
,”
Combust. Flame
,
121
, pp.
137
151
.
31.
Gutmark
,
E.
,
Schadow
,
K. C.
,
Parr
,
D. M.
,
Harris
,
C. K.
, and
Wilson
,
K. J.
,
1985
, “
The Mean and Turbulent Structure of Noncircular Jets,” AIAA Shear Flow Conference
,
AIAA Pap.
, 85-0543.
32.
Quinn, W. R., 1989, “The Turbulent Free Jet Issuing From a Sharp-Edged Elliptical Slot,” 27th Aerospace Sciences Meeting, AIAA, Reston, VA, Paper AIAA-89-0664.
33.
Hussain
,
F.
, and
Hussain
,
H. S.
,
1989
, “
Elliptic Jets, Part I, Characteristics of Excited and Unexcited jets
,”
J. Fluid Mech.
,
208
, pp.
257
320
.
34.
Kamal, A., 1995, “Turbulent Diffusion Gas Jet Flames From Circular and Elliptic Nozzles,” Ph.D. thesis, School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK.
35.
Gollahalli
,
S. R.
,
Khanna
,
T.
, and
Prabhu
,
N.
,
1992
, “
Diffusion Flames of Gas jets Issued From Circular and Elliptic Nozzles
,”
Combust. Sci. Technol.
,
86
, pp.
267
288
.
36.
Gollahalli
,
S. R.
,
1998
, “
Effect of Flame Lift-Off on the Differences Between the Diffusion Flames From Circular and Elliptic Burners
,”
ASME J. Energy Resour. Technol.
,
120
, pp.
161
166
.
37.
Luna
,
S. P.
,
Choudhuri
,
A. R.
, and
Gollahalli
,
S. R.
,
2001
, “
Effects of Elliptic Co-Flow on the Structure of A Turbulent Diffusion Flame
,”
AIAA Pap.
, 2001-0977.
38.
Fristrom, R. M., and Westenberg, A. A., 1965, Flame Structure, McGraw-Hill, New York, NY, p. 151.
39.
Papanikolau, N., and Wierzba, I., 1996, “The Effects of Burner Geometry and Fuel Composition on the Stability of a Jet Diffusion Flame,” Energy Week, Book VII, pp. 8–15.
40.
Pardiwalla, D., 1997, Elliptic Gas Jet Flames in Crossflow, M.S. thesis, School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK.
41.
Reynolds, W. C., 1986, “The Element Potential method for Chemical Equilibrium Calculation—Implementation of the Interactive Program, STANJAN,” Report of the Department of Mechanical Engineering, Stanford University, Palo Alto, CA.
42.
Turns, S. R., 1996, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, NY, pp. 475–477.
You do not currently have access to this content.