Control of water flow in open hole wells is an urgent necessity to minimize water production and maximize oil output. Elastomers provide tight seals as they deform against formation during the expansion process of a solid expandable tubular. A better prediction of behavior of elastomers in compression will achieve an effective sealing mechanism. Due to the inherent nonlinearity of tubular expansion and elastomer compression against open hole formation, a closed form solution is extremely difficult to obtain. Finite element modeling provides a viable alternative, as an approximate simulation tool, to determine the seal pressure without significant compromise on the complexity of the problem. The finite element analysis software is employed to model the tubular expansion resulting in compression of elastomer seal to effectively isolate unwanted water producing zones. The formation is modeled as a rigid body or an elastic or elastic-plastic material. Two different boundary conditions, fixed-free and fixed-fixed, are employed depending on prevailing practices of oil operators in such applications. The effect of seal length and thickness, compression ratio and shear resistance at seal-formation interface are determined on the contact pressure between seal and formation.

1.
Filippov
,
A.
,
Mack
,
R.
,
Cook
,
L.
,
York
,
P.
,
Ring
,
L.
, and
McCoy
,
T.
, 1999, “
Expandable Tubular Solutions
,”
1999 SPE Annual Technical Conference
, Houston, TX, Oct. 3–6, SPE Paper No. 56500.
2.
Haut
,
C.
, 1999, “
Meeting Economic Challenges of Deepwater Drilling with Expandable-Tubular Technology
,”
1999 Deep Offshore Technology International Conference
, Stavanger, Oct. 18–21.
3.
Dupal
,
K.
, 2001, “
Industry Experience With Solid Expandable Tubular Technology
,” World Oil, Aug.
4.
Rivenback
,
M.
,
Demong
,
K.
,
Sun
,
S.
,
Mulhem
,
S. S.
, and
Olivera
,
G.
, 2004, “
Solid Expandable Tubular Technology: The Value of Planned Installation vs Contingency
,” SPE Paper No. 90821.
5.
Wallace
,
J.
, 2005, “
Technical Enhancement Increase the Life and Add Value to New and Existing Wells by Using Solid Expandable Solutions
,” SPE Paper No. 94282.
6.
Bagley
,
W. H.
,
Schultz
,
D.
,
Mueller
,
J.
,
Vondenstein
,
M.
, and
Chowdhary
,
H.
, 2008, “
Solid Expandable Tubular System Mitigates High-Pressure Zones With Record Length
,” SPE Paper No. 112756.
7.
Al-Balushi
,
H.
,
Al-Rashdi
,
M.
, and
Al-Shandoodi
,
M.
, 2004, “
World Longest Expandable Open Hole Clad & Open Hole Liner with Swelling Elastomer Deployed in Yibal Horizontal Wells
,”
IADC/SPE Asia Drilling Conference
, Malaysia.
8.
Seibi
,
A. C.
,
Pervez
,
T.
,
Al-Hiddabi
,
S. A.
, and
Karrech
,
A.
, 2004, “
Finite Element Modeling of Solid Tubular Expansion-A Typical Well Engineering Application
,” SPE Paper No. 87743.
9.
Daigle
,
C. L.
,
Campo
,
D. B.
,
Naquin
,
C. J.
,
Cardenas
,
R.
,
Ring
,
L. M.
, and
York
,
P. L.
, 2000, “
Expandable Tubulars: Field Examples of Application in Well Construction and Remediation
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 2–4, SPE Paper No. 62958.
10.
Pervez
,
T.
,
Seibi
,
A. C.
,
Al-Hiddabi
,
S. A.
,
Marketz
,
F.
,
Al-Jahwari
F. K.
, and
Qamar
,
S. Z.
, 2007, “
Solid Tubular Expansion in Horizontal Wells
,” SPE Paper No. 105740.
11.
Seibi
,
A. C.
,
Karrech
,
A.
,
Pervez
,
T.
,
Al-Hiddabi
,
S. A.
,
Al-Yahmadi
,
A.
, and
Al-Shabibi
,
A.
, 2009, “
Dynamic Effects of Mandrel/Tubular Interaction on Down-Hole Solid Tubular Expansion in Well Engineering
,”
ASME J. Energy Resour. Technol.
0195-0738,
131
, p.
013101
.
12.
Pervez
,
T.
,
Qamar
,
S. Z.
,
Seibi
,
A. C.
, and
Al-Jahwari
,
F. K.
, 2008, “
Use of SET in Cased and Open Holes: Comparison Between Aluminum and Steel
,”
ASME J. Mech. Des.
0161-8458,
29
, pp.
811
817
.
13.
Al-Mumen
,
A. A.
,
Al-Umran
,
M. I.
,
Agarwal
,
P.
,
Jorgenson
,
T.
, and
Smith
,
P. E.
, 2008, “
Unique Solution for Fracture Isolation Resolves Water/Gas Breakthrough Challenges in a Horizontal Slimhole Wells
,” SPE Paper No. 115270.
14.
Tsai
,
H. C.
, 2005, “
Compression Analysis of Rectangular Elastic Layers Bonded Between Rigid Plates
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
3395
3410
.
15.
Al-Yami
,
A. S.
,
Nasr-El-Din
,
H. A.
,
Al-Arfaj
,
M. K.
,
Al-Saleh
,
S. H.
,
Al-Humaidi
,
A. S.
,
Awang
,
M. Z.
, and
Al-Mohanna
K. S.
, 2008, “
Investigation of Water-Swelling Packers
,” SPE Paper No. 114814.
16.
Lee
,
T.
, and
Cain
,
P.
, 1987, “
Using FEA to Analyze an Elastomeric Compression Seal for an Oil Field Application
,”
ASME International Design Engineering Conference
.
17.
Rogovoy
,
A.
, 2001, “
Effect of Elastomer Slight Compressibility
,”
Eur. J. Mech. A/Solids
0997-7538,
20
, pp.
757
775
.
18.
Banks
,
H. T.
,
Pinter
,
G. A.
, and
Yeoh
,
O. H.
, 2002, “
Analysis of Bonded Elastic Blocks
,”
Math. Comput. Modell.
0895-7177,
36
, pp.
875
888
.
19.
Yeoh
,
O. H.
,
Pinter
,
G. A.
, and
Banks
,
H. T.
, 2002, “
Compression of Bonded Rubber Blocks
,”
Rubber Chem. Technol.
0035-9475,
75
, pp.
549
561
.
20.
Mackerle
,
J.
, 2004, “
Rubber and Rubber-Like Materials, Finite Element Analysis and Simulations, an Addendum: A Bibliography (1997–2203)
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
1031
1053
.
21.
Prior
,
A.
, and
Cadge
,
D.
, 1999, “
Finite Element Analysis of Contact and Hyperelastic Materials
,”
Proceedings of the Finite Element Analysis of Elastomers
, pp.
129
140
.
22.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
23.
Ancey
,
C.
, 2007, “
Plasticity and Geophysical Flows: A Review
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
142
, pp.
4
35
.
You do not currently have access to this content.