Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PHEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pretransmission and post transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

References

1.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
, pp.
839
849
.10.1109/TCST.2003.815606
2.
Pisu
,
P.
, and
Rizzoni
,
G.
,
2007
, “
A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
15
, pp.
506
518
.10.1109/TCST.2007.894649
3.
Sciarretta
,
A.
,
Back
,
M.
, and
Guzzella
,
L.
,
2004
, “
Optimal Control of Parallel Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
12
, pp.
352
363
.10.1109/TCST.2004.824312
4.
Sciarretta
,
A.
, and
Guzzella
,
L.
,
2007
, “
Control of Hybrid Electric Vehicles
,”
IEEE Control Syst. Mag.
,
27
, pp.
60
70
.10.1109/MCS.2007.338280
5.
Delprat
,
S.
,
Lauber
,
J.
,
Guerra
,
T. M.
, and
Rimaux
,
J.
,
2004
, “
Control of a Parallel Hybrid Powertrain: Optimal Control
,”
IEEE Trans. Veh. Technol.
,
53
, pp.
872
881
.10.1109/TVT.2004.827161
6.
Antoniou
,
A. I.
,
Komyathy
,
J.
,
Bench
,
J.
, and
Emadi
,
A.
,
2007
, “
Modeling and Simulation of Various Hybrid-Electric Configurations of the High-Mobility Multipurpose Wheeled Vehicle (HMMWV)
,”
IEEE Trans. Veh. Technol.
,
56
, pp.
459
465
.10.1109/TVT.2007.891490
7.
West
,
R. E.
, and
Kreith
,
F.
,
2006
, “
A Vision for a Secure Transportation System Without Hydrogen or Oil
,”
ASME J. Energy Resour. Technol.
,
128
, pp.
236
243
.10.1115/1.2213277
8.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
, pp.
031001
031006
.10.1115/1.4004151
9.
Gong
,
Q.
,
Li
,
Y.
, and
Peng
,
Z.-R.
,
2008
, “
Trip-Based Optimal Power Management of Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
57
, pp.
3393
3401
.10.1109/TVT.2008.921622
10.
Johannesson
,
L.
,
Asbogard
,
M.
, and
Egardt
,
B.
,
2007
, “
Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming
,”
IEEE Trans. Intell. Transp. Syst.
,
8
, pp.
71
83
.10.1109/TITS.2006.884887
11.
Khaligh
,
A.
,
Miraoui
,
A.
, and
Garret
,
D.
,
2009
, “
Special Section on Vehicular Energy-Storage Systems
,”
IEEE Trans. Veh. Technol.
,
58
, pp.
3879
3881
.10.1109/TVT.2009.2029194
12.
Wirasingha
,
S. G.
, and
Emadi
,
A.
,
2011
, “
Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
111
122
.10.1109/TVT.2010.2090178
13.
Samaras
,
C.
, and
Meisterling
,
K.
,
2008
, “
Life Cycle Assessment of Greenhouse Gas Emissions From Plug-In Hybrid Vehicles: Implications for Policy
,”
Environ. Sci. Technol.
,
42
, pp.
3170
3176
.10.1021/es702178s
14.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1999
, “
CAE Tools for Quasi-Static Modeling and Optimization of Hybrid Powertrains
,”
IEEE Trans. Veh. Technol.
,
48
, pp.
1762
1769
.10.1109/25.806768
15.
Wang
,
L.
,
Collins
,
E. G.
, Jr.
, and
Li
,
H.
,
2011
, “
Optimal Design and Real-Time Control for Energy Management in Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
1419
1429
.10.1109/TVT.2011.2122272
16.
Sung Chul
,
O.
,
2005
, “
Evaluation of Motor Characteristics for Hybrid Electric Vehicles Using the Hardware-in-the-Loop Concept
,”
IEEE Trans. Veh. Technol.
,
54
, pp.
817
824
.10.1109/TVT.2005.847228
17.
Inoa
,
E.
, and
Wang
,
J.
,
2011
, “
PHEV Charging Strategies for Maximized Energy Saving
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
2978
2986
.10.1109/TVT.2011.2162085
18.
Tara
,
E.
,
Shahidinejad
,
S.
,
Filizadeh
,
S.
, and
Bibeau
,
E.
,
2010
, “
Battery Storage Sizing in a Retrofitted Plug-In Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
59
, pp.
2786
2794
.10.1109/TVT.2010.2046659
19.
Triger
,
L.
,
Paterson
,
J.
, and
Drozdz
,
P.
,
1993
, “
Hybrid Vehicle Engine Size Optimization
,”
SAE Future Transportation Technology Conference and Exposition
,
San Antonio, TX
, SAE Paper No. 931793.
20.
Aceves
,
S. M.
,
Smith
,
J. R.
,
Perkins
,
L. J.
,
Haney
,
S. W.
, and
Flowers
,
D. L.
,
1996
, “
Optimization of a CNG Series Hybrid Concept Vehicle
,”
SAE International Congress and Exposition
,
Detroit, MI
, SAE Paper No. 960234.
21.
Moore
,
T.
,
1996
, “
Tools and Strategies for Hybrid-Electric Drivesystem Optimization
,”
SAE Future Transportation Technology Conference and Exposition
,
Vancouver, Canada
, SAE Paper No. 961660.
22.
Zoelch
,
U.
, and
Schroeder
,
D.
,
1998
, “
Dynamic Optimization Method for Design and Rating of the Components of a Hybrid Vehicle
,”
Int. J. Veh. Des.
,
19
, pp.
1
13
.
23.
Assanis
,
D.
,
Delagrammatikas
,
G.
,
Fellini
,
R.
,
Filipi
,
Z.
,
Liedtke
,
J.
,
Michelena
,
N.
,
Papalambros
,
P.
,
Reyes
,
D.
,
Rosenbaum
,
D.
,
Sales
,
A.
, and
Sasena
,
M.
,
1999
, “
An Optimization Approach to Hybrid Electric Propulsion System Design
,”
Mech. Struct. Mach.
,
27
(
4
), pp.
393
421
.10.1080/08905459908915705
24.
Fellini
,
R.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Sasena
,
M.
,
1999
, “
Optimal Design of Automotive Hybrid Powertrain Systems
,”
Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing
,
Los Alamitos, CA
, Feb. 1–3, pp.
400
405
.
25.
Shiau
,
C. S. N.
,
Kaushal
,
N.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
,
2010
, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
, p.
091013
.10.1115/1.4002194
26.
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Optimization for Electric Hybrid Vehicles
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012203
.10.1115/1.3068347
27.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
, p.
0124011
.10.1115/1.3066392
28.
Gurkaynak
,
Y.
,
Khaligh
,
A.
, and
Emadi
,
A.
,
2009
, “
State of the Art Power Management Algorithms for Hybrid Electric Vehicles
,”
5th IEEE Vehicle Power and Propulsion Conference
, VPPC '09,
Dearborn, MI
, Sept. 7–10, pp.
388
394
.
29.
Bumby
,
J. R.
, and
Forster
,
I.
,
1987
, “
Optimisation and Control of a Hybrid Electric Car
,”
IEE Proc.-D: Control Theory Appl.
,
134
, pp.
373
387
.10.1049/ip-d.1987.0060
30.
Capata
,
R.
, and
Lora
,
M.
,
2007
, “
The LETHE Gas Turbine Hybrid Prototype Vehicle of the University of Roma 1: Drive Cycle Analysis of Model Vehicle Management Unit
,”
ASME J. Energy Resour. Technol.
,
129
, pp.
107
116
.10.1115/1.2718581
31.
Filipi
,
Z. S.
,
Louca
,
L. S.
,
Daran
,
B.
,
Lin
,
C.-C.
,
Yildir
,
U.
,
Wu
,
B.
,
Kokkolaras
,
M.
,
Assanis
,
D. N.
,
Peng
,
H.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
,
2004
, “
Combined Optimization of Design and Power Management of the Hydraulic Hybrid Propulsion System for a 6 × 6 Medium Truck
,”
Heavy Vehicle Sys., Int. J. Vehicle Des.
,
11
(
3–4
), pp.
372
402
.10.1504/IJHVS.2004.005458
32.
Wu
,
L.
,
Wang
,
Y.
,
Yuan
,
X.
, and
Chen
,
Z.
,
2011
, “
Multiobjective Optimization of HEV Fuel Economy and Emissions Using the Self-Adaptive Differential Evolution Algorithm
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
2458
2470
.10.1109/TVT.2011.2157186
33.
Nino-Baron
,
C. E.
,
Tariq
,
A. R.
,
Zhu
,
G.
, and
Strangas
,
E. G.
,
2011
, “
Trajectory Optimization for the Engine-Generator Operation of a Series Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
2438
2447
.10.1109/TVT.2011.2141695
34.
Syed
,
F. U.
,
Kuang
,
M. L.
,
Smith
,
M.
,
Okubo
,
S.
, and
Ying
,
H.
,
2009
, “
Fuzzy Gain-Scheduling Proportional-Integral Control for Improving Engine Power and Speed Behavior in a Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
58
, pp.
69
84
.10.1109/TVT.2008.923690
35.
Solano Martinez
,
J.
,
Hissel
,
D.
,
Pera
,
M.-C.
, and
Amiet
,
M.
,
2011
, “
Practical Control Structure and Energy Management of a Testbed Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
4139
4152
.10.1109/TVT.2011.2169821
36.
Sezer
,
V.
,
Gokasan
,
M.
, and
Bogosyan
,
S.
,
2011
, “
A Novel ECMS and Combined Cost Map Approach for High-Efficiency Series Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
, pp.
3557
3570
.10.1109/TVT.2011.2166981
37.
Malikopoulos
,
A. A.
, and
Smith
,
D. E.
,
2011
, “
An Optimization Model for Plug-In Hybrid Electric Vehicles
,”
Proceedings of 2011 Fall Technical Conference of the ASME Internal Combustion Engine Division
,
Morgantown, WV
, pp.
739
748
.
38.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
(3), p. 031001.10.1115/1.4004151
39.
Songqing
,
S.
, and
Wang
,
G. G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
J. Mech. Des.
,
132
, p.
051009
.10.1115/1.4001597
40.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1995
,
Adaptive Control: Second Edition
, Addison Wesley Longman Publishing Co., Boston.
41.
US Environmental Protection Agency
,
2005
, “
Average Carbon Dioxide Emissions Resulting from Gasoline and Diesel Fuel
,”
Office or Transportation and Air Quality, EPA420-F-05-00
, http://www.etieco.com/content-files/EPA emissions calc 420f05001.pdf, accessed on March, 2011.
42.
Weber
,
C. L.
,
Jaramillo
,
P.
,
Marriott
,
J.
, and
Samaras
,
C.
,
2010
, “
Life Cycle Assessment and Grid Electricity: What do We Know and What Can We Know
?,”
Environ. Sci. Technol.
,
44
(
6
), pp.
1895
1901
.10.1021/es9017909
43.
Hicks
,
C. R.
, and
Turner
,
K. V.
,
1999
,
Fundamental Concepts in the Design of Experiments
, 5th ed.,
Oxford University Press
,
New York
.
You do not currently have access to this content.