Global rates of ocean thermal energy conversion (OTEC) are assessed with a high-resolution (1 deg × 1 deg) ocean general circulation model (OGCM). In numerically intensive simulations, the OTEC process is represented by a pair of sinks and a source of specified strengths placed at selected water depths across the oceanic region favorable for OTEC. Results broadly confirm earlier estimates obtained with a coarse (4 deg × 4 deg) OGCM, but with the greater resolution and more elaborate description of key physical oceanic mechanisms in the present case, the massive deployment of OTEC systems appears to affect the global environment to a relatively greater extent. The maximum global OTEC power production drops to 14 TW, or about half of previously estimated levels, but it would be achieved with only one-third as many OTEC systems. Environmental effects at maximum OTEC power production are generally similar in both sets of simulations. The oceanic surface layer would cool down in tropical OTEC regions with a compensating warming trend elsewhere. Some heat would penetrate the ocean interior until the environment reaches a new steady state. A significant boost of the oceanic thermohaline circulation (THC) would occur. Although all simulations with given OTEC flow singularities were run for 1000 years to ensure stabilization of the system, convergence to a new equilibrium was generally achieved much faster, i.e., roughly within a century. With more limited OTEC scenarios, a global OTEC power production of the order of 7 TW could still be achieved without much effect on ocean temperatures.

References

1.
d'Arsonval
,
A.
,
1881
, “
Utilisation des forces naturelles. Avenir de l'Électricité
,”
Rev. Sci.
,
17
, pp.
370
372
, in French, available at: http://gallica.bnf.fr/ark:/12148/bpt6k215097r
2.
Claude
,
G.
,
1930
, “
Power From the Tropical Seas
,”
Mech. Eng.
,
52
(
12
), pp.
1039
1044
.
3.
Avery
,
W. H.
, and
Wu
,
C.
,
1994
,
Renewable Energy From the Ocean—A Guide to OTEC, Johns Hopkins University Applied Physics Laboratory Series in Science and Engineering
,
J. R.
Apel
, ed.,
Oxford University Press
,
New York
, p.
446
.
4.
Nihous
,
G. C.
,
2005
, “
An Order-Of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources
,”
ASME J. Energy Res. Technol.
,
127
, pp.
328
333
.10.1115/1.1949624
5.
Nihous
,
G. C.
,
2007
, “
A Preliminary Assessment of Ocean Thermal Energy Conversion (OTEC) Resources
,”
ASME J. Energy Res. Technol.
,
129
, pp.
10
17
.10.1115/1.2424965
6.
Nihous
,
G. C.
,
2007
, “
An Estimate of Atlantic Ocean Thermal Energy Conversion (OTEC) Resources
,”
Ocean Eng.
,
34
, pp.
2210
2221
.10.1016/j.oceaneng.2007.06.004
7.
Rajagopalan
,
K.
, and
Nihous
,
G. C.
,
2013
, “
Estimates of Global Ocean Thermal Energy Conversion (OTEC) Resources Using an Ocean General Circulation Model
,”
Renewable Energy
,
50
, pp.
532
540
.10.1016/j.renene.2012.07.014
8.
Marshall
,
J.
,
Adcroft
,
A.
,
Hill
,
C.
,
Perelman
,
L.
, and
Heisey
,
C.
,
1997
, “
A Finite-Volume, Incompressible Navier-Stokes Model for Studies of the Ocean on Parallel Computers
,”
J. Geophys. Res.
,
102
(C
3
), pp.
5753
5766
.10.1029/96JC02775
9.
Adcroft
,
A.
,
Hill
,
C.
,
Campin
,
J.-M.
,
Marshall
,
J.
, and
Heimbach
,
P.
,
2004
, “
Overview of the Formulation and Numerics of the MITgcm
,”
Proceedings of the ECMWF Seminar Series on Numerical Methods, Recent Developments in Numerical Methods for Atmosphere and Ocean Modeling
, pp.
139
149
, http://mitgcm.org/pdfs/ ECMWF2004-Adcroft.pdf
10.
Forget
,
G.
,
2010
, “
Mapping Ocean Observations in a Dynamical Framework: A 2004-06 Ocean Atlas
,”
J. Phys. Oceanogr.
,
40
, pp.
1201
1221
.10.1175/2009JPO4043.1
11.
da Silva
,
A.
,
Young
,
A. C.
, and
Levitus
,
S.
,
1994
, “
Atlas of Surface Marine Data 1994 Vol. 1: Algorithms and Procedures
,”
NOAA Atlas NESDIS 6
,
U.S. Government Printing Office
,
Washington, D.C.
12.
Rosati
,
A.
, and
Miyakoda
,
K.
,
1988
, “
A General Circulation Model for Upper Ocean Simulation
,”
J. Phys. Oceanogr.
,
18
, pp.
1601
1626
.10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2
13.
Josey
,
S. A.
,
Oakley
D.
, and
Pascal
,
R. W.
,
1997
, “
On Estimating the Atmospheric Longwave Flux at the Ocean Surface From Ship Meteorological Reports
,”
J. Geophys. Res.: Oceans
,
102
(C
13
), pp.
27,961
27,972
.10.1029/97JC02420
14.
Barnier
,
B.
,
Siefridt
,
L.
, and
Marchesiello
,
P.
,
1995
, “
Thermal Forcing for a Global Ocean Circulation Model Using a Three-Year-Climatology of ECMWF Analysis
,”
J. Mar. Syst.
,
6
, pp.
363
380
.10.1016/0924-7963(94)00034-9
15.
Griffies
,
S. M.
,
Biastoch
,
A.
,
Böning
,
C.
,
Bryan
,
F.
,
Danabasoglu
,
G.
,
Chassignet
,
E. P.
,
England
,
M. H.
,
Gerdes
,
R.
,
Haak
,
H.
,
Hallberg
,
R. W.
,
Hazeler
,
W.
,
Jungclaus
,
J.
,
Large
,
W. G.
,
Madec
,
G.
,
Pirani
,
A.
,
Samuels
,
B. L.
,
Scheinert
,
M.
,
Gupta
,
A. S.
,
Severijns
,
C. A.
,
Simmons
,
H. L.
,
Treguier
,
A. M.
,
Winton
,
M.
,
Yeager
,
S.
, and
Yin
,
J.
,
2009
, “
Coordinated Ocean-Ice Reference Experiments (COREs)
,”
Ocean Model.
,
26
, pp.
1
46
.10.1016/j.ocemod.2008.08.007
16.
Stammer
,
D.
,
Wunsch
,
C.
,
Giering
,
R.
,
Eckert
,
C.
,
Heimbach
,
P.
,
Marotzke
,
J.
,
Adcroft
,
A.
,
Hill
,
C. N.
, and
Marshall
,
J.
,
2002
, “
Global Ocean Circulation During 1992-1997, Estimated From Ocean Observations and a General Circulation Model
,”
J. Geophys. Res.: Oceans
,
107
(C
9
), pp.
1
27
.10.1029/2001JC000888
17.
Wunsch
,
C.
, and
Heimbach
,
P.
,
2006
, “
Estimated Decadal Changes in the North Atlantic Meridional Overturning Circulation and Heat Flux 1993-2004
,”
J. Phys. Oceanogr.
,
36
, pp.
2012
2024
.10.1175/JPO2957.1
18.
Lumpkin
,
R.
, and
Speer
,
K.
,
2003
, “
Large-Scale Vertical and Horizontal Circulation in the North Atlantic Ocean
,”
J. Phys. Oceanogr.
,
33
(
9
), pp.
1902
1920
.10.1175/1520-0485(2003)033<1902:LVAHCI>2.0.CO;2
19.
Ganachaud
,
A.
, and
Wunsch
,
C.
,
2000
, “
Improved Estimates of Global Ocean Circulation, Heat Transport and Mixing From Hydrographic Data
,”
Nature
,
408
, pp.
453
456
.10.1038/35044048
20.
Locarnini
,
R. A.
,
Mishonov
,
A. V.
,
Antonov
,
J. I.
,
Boyer
,
T. P.
, and
Garcia
,
H. E.
,
2006
, “
World Ocean Atlas 2005, Volume 1: Temperature
,”
S.
Levitus
, ed.,
NOAA Atlas NESDIS 61
,
U.S. Government Printing Office
,
Washington, D.C.
, p.
182
.
21.
Berry
,
G. D.
, and
Aceves
,
S. M.
,
2005
, “
The Case for Hydrogen in a Carbon Constrained World
,”
ASME J. Energy Res. Technol.
,
127
, pp.
89
94
.10.1115/1.1924566
22.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
The Performance of the Kalina Cycle System 11 (KCS-11) With Low-Temperature Heat Sources
,”
ASME J. Energy Res. Technol.
,
129
, pp.
243
247
.10.1115/1.2748815
23.
Large
,
W. G.
,
McWilliams
,
J.
, and
Doney
,
S.
,
1994
, “
Oceanic Vertical Mixing: A Review and a Model With Nonlocal Boundary Layer Parameterization
,”
Rev. Geophys.
,
32
, pp.
363
403
.10.1029/94RG01872
24.
Schlitzer
,
R.
,
2009
, “
Ocean Data View
,” http://odv.awi.de
25.
Zener
,
C.
,
1973
, “
Solar Sea Power
,”
Phys. Today
,
26
, pp.
48
53
.10.1063/1.3127895
26.
Zener
,
C.
,
1977
, “
The OTEC Answer to OPEC: Solar Sea Power
,”
Mech. Eng.
,
99
(
12
), pp.
26
29
.
27.
Franco
,
A.
, and
Vazquez
,
A. R. D.
,
2006
, “
A Thermodynamic Based Approach for the Multicriteria Assessment of Energy Conversion Systems
,”
ASME J. Energy Res. Technol.
,
128
, pp.
346
351
.10.1115/1.2358149
You do not currently have access to this content.