The design and development of wind turbines is increasing throughout the world to offer electricity without paying much to the global warming. The Savonius wind turbine rotor, or simply the Savonius rotor, is a drag-based device that has a relatively low efficiency. A high negative torque produced by the returning blade is a major drawback of this rotor. Despite having a low efficiency, its design simplicity, low cost, easy installation, good starting ability, relatively low operating speed, and independency to wind direction are its main rewards. With the goal of improving its power coefficient (CP), a considerable amount of investigation has been reported in the past few decades, where various design modifications are made by altering the influencing parameters. Concurrently, various augmentation techniques have also been used to improve the rotor performance. Such augmenters reduce the negative torque and improve the self-starting capability while maintaining a high rotational speed of the rotor. The CP of the conventional Savonius rotors lie in the range of 0.12–0.18, however, with the use of augmenters, it can reach up to 0.52 with added design complexity. This paper attempts to give an overview of the various augmentation techniques used in Savonius rotor over the last four decades. Some of the key findings with the use of these techniques have been addressed and makes an attempt to highlight the future direction of research.

References

1.
Jian
,
C.
,
Kumbernuss
,
J.
,
Linhua
,
Z.
,
Lin
,
L.
, and
Hongxing
,
Y.
,
2012
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine's Performance
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011016
.
2.
Zhou
,
T.
, and
Rempfer
,
D.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renewable Energy
,
51
, pp.
373
381
.
3.
Modi
,
V.
, and
Fernando
,
M.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
4.
Hayashi
,
T.
,
Li
,
Y.
, and
Hara
,
Y.
,
2005
, “
Wind Tunnel Tests on a Different Phase Three-Stage Savonius Rotor
,”
JSME Int. J. Ser. B
,
48
(
1
), pp.
9
16
.
5.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1351
1371
.
6.
Damak
,
A.
,
Driss
,
Z.
, and
Abid
,
M. S.
,
2013
, “
Experimental Investigation of Helical Savonius Rotor With a Twist of 180
deg,”
Renewable Energy
,
52
, pp.
136
142
.
7.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic 548 Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
8.
Shikha
,
Bhatti
,
T. S.
, and
Kothari
,
D. P.
,
2003
, “
Wind Energy Conversion Systems as a Distributed Source of Generation
,”
J. Energy Eng.
,
129
(
3
), pp.
69
80
.
9.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2010
, “
Optimization of Savonius turbines Using an Obstacle Shielding the Returning Blade
,”
Renewable Energy
,
35
(11), pp. 2618–2626.
10.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2010
, “
The Use of a Curtain Design to Increase the Performance Level of a Savonius Wind Rotors
,”
Renewable Energy
,
35
(
4
), pp.
821
829
.
11.
Abraham
,
J. P.
,
Plourde
,
B. D.
,
Mowry
,
G. S.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renewable Sustainable Energy
,
4
(
4
), p. 042703.
12.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
13.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
14.
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Aerodynamic Performance Evaluation of Novel Savonius-Style Wind Turbine Under Oriented Jet
,”
ASME
Paper No. GTINDIA2014-8152.
15.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
AbdEL-hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
139
, pp.
8
15
.
16.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C.-T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
904
921
.
17.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
.
18.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
227
(
4
), pp.
528
542
.
19.
Savonius
,
S. J.
,
1930
, “
The S-Rotor and Its Applications
,”
Mech. Eng.
,
53
(5), pp. 333–338.https://www.scopus.com/record/display.uri?eid=2-s2.0-0000730199&origin=inward&txGid=ddc8fb48a96a176cedac67a404b75f42
20.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Fernando
,
M. S. U. K.
,
1984
, “
Optimum-Configuration Studies and Prototype Design of a Wind-Energy-Operated Irrigation System
,”
J. Wind Eng. Ind. Aerodyn.
,
16
(
1
), pp.
85
96
.
21.
Shaughnessy
,
B. M.
, and
Probert
,
S. D.
,
1992
, “
Partially-Blocked Savonius Rotor
,”
Appl. Energy
,
43
(
4
), pp.
239
249
.
22.
Promdee
,
C.
, and
Photong
,
C.
,
2016
, “
Effects of Wind Angles and Wind Speeds on Voltage Generation of Savonius Wind Turbine With Double Wind Tunnels
,”
Procedia Comput. Sci.
,
86
, pp.
401
404
.
23.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
.
24.
Benesh
,
A. H.
,
Ave
,
S. A.
, and
Dak
,
P. S.
,
1996
, “
Wind Turbine With Savonius-Type Rotor
,” U.S. Patent No.
5494407 A
.https://www.google.ch/patents/US5494407
25.
Grinspan
,
A. S.
,
Saha
,
U. K.
, and
Mahanta
,
P.
,
2004
, “
Experimental Investigation of Twisted Bladed Savonius Wind Turbine Rotor
,”
Int. Energy J.
,
5
(
1
), pp.
1
9
.http://www.rericjournal.ait.ac.th/index.php/reric/article/view/142
26.
Banerjee
,
A.
,
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine
,”
ASME
Paper No. GTINDIA2014-8141.
27.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
ASME
Paper No. OMAE2016-55095.
28.
Song
,
L.
,
Yang
,
Z.-X.
,
Deng
,
R.-T.
, and
Yang
,
X.-G.
,
2013
, “
Performance and Structure Optimization for a New Type of Vertical Axis Wind Turbine
,”
International Conference on Advanced Mechatronic Systems
(
ICAMechS
), Luoyang, China, Sept. 25–27, pp.
687
692
.
29.
Gerardo
,
G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines
,”
Energy Procedia
,
50
, pp.
10
18
.
30.
Tartuferi
,
M.
,
Alessandro
,
V. D.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
.
31.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2017
, “
CFD Investigation to Quantify the Effect of Layered Multiple Miniature Blades on the Performance of Savonius Rotor
,”
Energy Convers. Manage
,
144
, pp.
275
285
.
32.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation
,”
Energy Convers. Manage
,
127
, pp.
43
54
.
33.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p. 061202.
34.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.
35.
Fujisawa
,
N.
,
Ishimatsu
,
K.
, and
Kage
,
K.
,
1995
, “
A Comparative Study of Navier-Stokes Calculations and Experiments for the Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
117
(
4
), pp.
344
346
.
36.
D'Alessandro
,
V.
,
Montelpare
,
S.
,
Ricci
,
R.
, and
Secchiaroli
,
A.
,
2010
, “
Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance
,”
Energy
,
35
(
8
), pp.
3349
3363
.
37.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044503
.
38.
Irabu
,
K.
, and
Roy
,
J. N.
,
2011
, “
Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
653
659
.
39.
Coughtrie
,
A. R.
,
Borman
,
D. J.
, and
Sleigh
,
P. A.
,
2013
, “
Effects of Turbulence Modelling on Prediction of Flow Characteristics in a Bench-Scale Anaerobic Gas-Lift Digester
,”
Bioresour. Technol.
,
138
, pp.
297
306
.
40.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
41.
Baz
,
A. M.
,
Mahmoud
,
N. A.
,
Hamed
,
A. M.
, and
Youssef
,
K. M.
,
2016
, “
Optimization of Two and Three Rotor Savonius Wind Turbine
,”
ASME
Paper No. GT2015-43988.
42.
Caboni
,
M.
,
Sergio Campobasso
,
M.
, and
Minisci
,
E.
,
2016
, “
Wind Turbine Design Optimization Under Environmental Uncertainty
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
082601
.
43.
Frikha
,
S.
,
Driss
,
Z.
,
Ayadi
,
E.
,
Masmoudi
,
Z.
, and
Abid
,
M. S.
,
2016
, “
Numerical and Experimental Characterization of Multi-Stage Savonius Rotors
,”
Energy
,
114
, pp.
382
404
.
44.
Gad-el-Hak
,
M.
,
2016
, “
Nine Decades of Fluid Mechanics
,”
ASME J. Fluids Eng.
,
138
(10), p. 100802.
45.
Ducoin
,
A.
,
Shadloo
,
M. S.
, and
Roy
,
S.
,
2017
, “
Direct Numerical Simulation of Flow Instabilities Over Savonius Style Wind Turbine Blades
,”
Renewable Energy
,
105
, pp.
374
385
.
46.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
.
47.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluids Eng.
,
111
(
1
), pp.
53
58
.
48.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
49.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
, and
Watanabe
,
K.
,
2017
, “
Power Augmentation of Shrouded Wind Turbines in a Multirotor System
,”
ASME J. Energy Resour. Technol
,
139
(
5
), pp.
51202
51212
.
50.
Gupta
,
R.
,
Biswas
,
A.
, and
Sharma
,
K. K.
,
2008
, “
Comparative Study of a Three-Bucket Savonius Rotor With a Combined Three-Bucket Savonius-Three-Bladed Darrieus Rotor
,”
Renewable Energy
,
33
(
9
), pp.
1974
1981
.
51.
Dobrev
,
I.
, and
Massouh
,
F.
,
2011
, “
CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine
,”
Energy Procedia
,
6
, pp.
711
720
.
52.
Naccache
,
G.
, and
Paraschivoiu
,
M.
,
2017
, “
Development of the Dual Vertical Axis Wind Turbine Using CFD
,”
ASME J. Fluids Eng.
,
139
(12), p. 121105.
53.
Alejandro Franco
,
J.
,
Carlos Jauregui
,
J.
,
Carbajal
,
A.
, and
Toledano-Ayala
,
M.
,
2017
, “
Shape Morphing Mechanism for Improving Wind Turbines Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051214
.
54.
Walker
,
J. F.
, and
Jenkins
,
N.
,
1997
,
Wind Energy Technology
,
Wiley
,
Chichester, UK
.
55.
Morcos
,
S. M.
,
Khalafallah
,
M. G.
, and
Heikel
,
H. A.
,
1981
, “
The Effect of Shielding on the Aerodynamic Performance of Savonius Wind Turbines
,”
16th Intersociety Energy Conversion Engineering Conference
, Atlanta, GA, Aug. 9–14, pp.
2037
2040
.http://adsabs.harvard.edu/abs/1981iece.conf.2037M
56.
Ogawa
,
T.
, and
Yoshida
,
H.
,
1986
, “
Effects of a Deflecting Plate and Rotor End Plates on Performance of Savonius Type Wind Turbine
,”
Bull. JSME
,
29
(253), pp.
2115
2121
.
57.
Huda
,
M. D.
,
Selim
,
M. A.
,
Islam
,
A. K. M. S.
, and
Islam
,
M. Q.
,
1992
, “
The Performance of an S-Shaped Savonius Rotor With a Deflecting Plate
,”
RERIC Int. Energy J.
,
14
(1), pp.
25
32
.
58.
Reupke
,
P.
, and
Probert
,
S. D.
,
1991
, “
Slatted-Blade Savonius Wind-Rotors
,”
Appl. Energy
,
40
(
1
), pp.
65
75
.
59.
Menet
,
J. L.
,
2004
, “
A Double-Step Savonius Rotor for Local Production of Electricity: A Design Study
,”
Renewable Energy
,
29
(
11
), pp.
1843
1862
.
60.
Rajkumar
,
M. J.
, and
Saha
,
U. K.
,
2006
, “
Valve-Aided Twisted Savonius Rotor
,”
Wind Eng.
,
30
(
3
), pp.
243
254
.
61.
Hu
,
Y.
,
Tong
,
Z.
, and
Wang
,
S.
,
2009
, “
A New Type of VAWT and Blade Optimization
,”
International Technology Innovation Conference
(
ITIC
), Xian, China, Oct. 12–14, pp. 1–5.
62.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2011
, “
Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine
,”
Appl. Energy
,
88
(
9
), pp.
3207
3217
.
63.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage
,
52
(1), pp.
236
242
.
64.
Tabassum
,
S. A.
, and
Probert
,
S. D.
,
1987
, “
Vertical-Axis Wind Turbine: A Modified Design
,”
Appl. Energy
,
28
(
1
), pp.
59
67
.
65.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
.
66.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renewable Energy
,
34
(
3
), pp.
521
529
.
67.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
.
68.
Irabu
,
K.
, and
Roy
,
J. N.
,
2007
, “
Characteristics of Wind Power on Savonius Rotor Using a Guide-Box Tunnel
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
580
586
.
69.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage
,
49
(
12
), pp.
3425
3432
.
70.
Plourde
,
B.
,
Abraham
,
J.
,
Mowry
,
G.
, and
Minkowycz
,
W.
,
2012
, “
Simulations of Three-Dimensional Vertical-Axis Turbines for Communications Applications
,”
Wind Eng.
,
36
(
4
), pp.
443
454
.
71.
Alom
,
N.
, and
Saha
,
U. K.
,
2016
, “
Numerical Optimization of Semicircular-Bladed Savonius Rotor Using Vent Augmenters
,”
Asian Congress on Gas Turbines
, Mumbai, India, Nov. 14–16, Paper No. ACGT2016.
72.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experiments Investigations on Single Stage, Two Stages and Three Stages Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
.
73.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
73
83
.
74.
Kang
,
C.
,
Liu
,
H.
, and
Yang
,
X.
,
2014
, “
Review of Fluid Dynamics Aspects of Savonius-Rotor-Based Vertical-Axis Wind Rotors
,”
Renewable Sustainable. Energy Rev.
,
33
, pp.
499
508
.
75.
Song
,
C.
,
Zheng
,
Y.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Li
,
C.
, and
Jiang
,
H.
,
2015
, “
Investigation of Meshing Strategies and Turbulence Models of Computational Fluid Dynamics Simulations of Vertical Axis Wind Turbines
,”
J. Renewable Sustainable Energy
,
7
(
3
), p. 033111.
76.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2014
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
.
77.
Uemura
,
Y.
,
Tanabe
,
Y.
,
Mamori
,
H.
,
Fukushima
,
N.
, and
Yamamoto
,
M.
,
2017
, “
Wake Deflection in Long Distance From a Yawed Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p. 051212.
78.
Rahman
,
M.
,
Morshed
,
K. N.
,
Lewis
,
J.
, and
Fuller
,
M.
,
2009
, “
Experimental and Numerical Investigations on Drag and Torque Characteristics of Three-Bladed Savonius Wind Turbine
,”
ASME
Paper No. IMECE2009-10838.
79.
Ferdoues
,
M. S.
,
Ebrahimi
,
S.
, and
Vijayaraghavan
,
K.
,
2017
, “
Multi-Objective Optimization of the Design and Operating Point of a New External Axis Wind Turbine
,”
Energy
,
125
, pp.
643
653
.
80.
Castelli
,
M. R.
, and
Benini
,
E.
,
2012
, “
Effect of Blade Inclination Angle on a Darrieus Wind Turbine
,”
ASME J. Turbomach.
,
134
(
3
), p.
031016
.
You do not currently have access to this content.