Abstract

This paper describes an experimental study on a combined assembly of a solar pond and two-phase thermosyphon toward thermoelectric power generation under actual weather conditions and proposes its mandatory association with the biomass energy-based system. Experiments under the studied solar radiation intensity ranging between 26 W/m2 and 976 W/m2 reveal that the maximum steady-state temperature potential during the actual operation of a solar pond is not sufficient to generate the minimum threshold thermoelectric voltage for deriving necessary power needed to recharge a 12 V battery. It is also highlighted that solar radiation heats both the upper and the lower layers nearly equally; however, the heat is lost at a faster rate from the upper layer than the lower layer. Consequently, with the passage of time, the temperature of the lower layer rises, and interestingly, the probability of obtaining maximum voltage during a day is maximum during the early morning. Under the present set of conditions, the maximum temperature gain is 26.58 °C, whereas a minimum temperature potential of 45.62 °C is found necessary to produce the required voltage. The economic analysis of the proposed system reveals that the electricity generation obtained from the proposed system is better than diesel power generation. In particular, the system is suitable for locations where access to the conventional grid-based power is difficult. The work opens opportunities and establishes the necessity of developing low-cost thermoelectric materials for further improving the cost of power generation.

References

1.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041201
. 10.1115/1.4007194
2.
Ding
,
L. C.
,
Akbarzadeh
,
A.
,
Date
,
A.
, and
Frawley
,
D. J.
,
2016
, “
Passive Small Scale Electric Power Generation Using Thermoelectric Cells in Solar Pond
,”
Energy
,
117
(
1
), pp.
149
165
. 10.1016/j.energy.2016.10.085
3.
Karakilcik
,
M.
,
Dincer
,
I.
,
Bozkurt
,
I.
, and
Atiz
,
A.
,
2013
, “
Performance Assessment of a Solar Pond With and Without Shading Effect
,”
Energy Convers. Manage.
,
65
, pp.
98
107
. 10.1016/j.enconman.2012.07.001
4.
Khalilian
,
M.
,
2017
, “
Experimental Investigation and Theoretical Modelling of Heat Transfer in Circular Solar Ponds by Lumped Capacitance Model
,”
Appl. Therm. Eng.
,
121
, pp.
737
749
. 10.1016/j.applthermaleng.2017.04.129
5.
Abdullah
,
A. A.
,
Fallatah
,
H. M.
,
Lindsay
,
K. A.
, and
Oreijah
,
M. M.
,
2017
, “
Measurements of the Performance of the Experimental Salt-Gradient Solar Pond at Makkah One Year After Commissioning
,”
Sol. Energy
,
150
, pp.
212
219
. 10.1016/j.solener.2017.04.040
6.
Velmurugan
,
V.
, and
Srithar
,
K.
,
2008
, “
Prospects and Scopes of Solar Pond: A Detailed Review
,”
Renew. Sustain. Energy Rev.
,
12
(
8
), pp.
2253
2263
. 10.1016/j.rser.2007.03.011
7.
Abbassi Monjezi
,
A.
, and
Campbell
,
A. N.
,
2017
, “
A Comparative Study of the Performance of Solar Ponds Under Middle Eastern and Mediterranean Conditions With Batch and Continuous Heat Extraction
,”
Appl. Therm. Eng.
,
120
, pp.
728
740
. 10.1016/j.applthermaleng.2017.03.086
8.
Ramadan
,
M. R. I.
,
El-Sebaii
,
A. A.
,
Aboul-Enein
,
S.
, and
Khallaf
,
A. M.
,
2004
, “
Experimental Testing of a Shallow Solar Pond With Continuous Heat Extraction
,”
Energy Buildings
,
36
(
9
), pp.
955
964
. 10.1016/j.enbuild.2004.03.002
9.
Fuqiang
,
C.
,
Yanji
,
H.
, and
Chao
,
Z.
,
2014
, “
A Physical Model for Thermoelectric Generators With and Without Thomson Heat
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011201
. 10.1115/1.4026280
10.
Chen
,
J.
, and
Wu
,
C.
,
1999
, “
Analysis on the Performance of a Thermoelectric Generator
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
61
63
. 10.1115/1.483163
11.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012401
. 10.1115/1.3066392
12.
Hendricks
,
T. J.
,
2007
, “
Thermal System Interactions in Optimizing Advanced Thermoelectric Energy Recovery Systems
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
223
231
. 10.1115/1.2751504
13.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022001
. 10.1115/1.4023097
14.
Ran
,
Y.
,
Deng
,
Y.
,
Hu
,
T.
,
Su
,
C.
, and
Liu
,
X.
,
2018
, “
Energy Efficient Thermoelectric Generator-Powered Localized Air-Conditioning System Applied in a Heavy-Duty Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072007
. 10.1115/1.4039607
15.
Singh
,
R.
,
Tundee
,
S.
, and
Akbarzadeh
,
A.
,
2011
, “
Electric Power Generation From Solar Pond Using Combined Thermosyphon and Thermoelectric Modules
,”
Sol. Energy
,
85
(
2
), pp.
371
378
. 10.1016/j.solener.2010.11.012
16.
Ding
,
L. C.
,
Akbarzadeh
,
A.
, and
Date
,
A.
,
2016
, “
Electric Power Generation via Plate Type Power Generation Unit From Solar Pond Using Thermoelectric Cells
,”
Appl. Energy
,
183
, pp.
61
76
. 10.1016/j.apenergy.2016.08.161
17.
Huminic
,
G.
, and
Huminic
,
A.
,
2011
, “
Heat Transfer Characteristics of a Two-Phase Closed Thermosyphons Using Nanofluids
,”
Exp. Therm. Fluid Sci.
,
35
(
3
), pp.
550
557
. 10.1016/j.expthermflusci.2010.12.009
18.
Omer
,
S. A.
,
Riffat
,
S. B.
, and
Ma
,
X.
,
2001
, “
Experimental Investigation of a Thermoelectric Refrigeration System Employing a Phase Change Material Integrated With Thermal Diode (Thermosyphons)
,”
Appl. Therm. Eng.
,
21
(
12
), pp.
1265
1271
. 10.1016/S1359-4311(01)00010-2
19.
Tan
,
L.
,
Singh
,
R.
, and
Akbarzadeh
,
A.
,
2012
, “
Thermal Performance of Two-Phase Closed Thermosyphon in Application of Concentrated Thermoelectric Power Generator Using Phase Change Material Thermal Storage
,”
Front. Heat Pipes
,
2
(
4
), p.
043001
. 10.5098/fhp.v2.4.3001
20.
Kumar
,
A.
,
Singh
,
K.
, and
Das
,
R.
,
2019
, “
Response Surface Based Experimental Analysis and Thermal Resistance Model of a Thermoelectric Power Generation System
,”
Appl. Therm. Eng.
,
159
, p.
113935
. 10.1016/j.applthermaleng.2019.113935
21.
Singh
,
B.
,
Gomes
,
J.
,
Tan
,
L.
,
Date
,
A.
, and
Akbarzadeh
,
A.
,
2012
, “
Small Scale Power Generation Using Low Grade Heat From Solar Pond
,”
Procedia Eng.
,
49
, pp.
50
56
. 10.1016/j.proeng.2012.10.111
22.
Kumar
,
A.
,
Singh
,
K.
,
Verma
,
S.
, and
Das
,
R.
,
2018
, “
Inverse Prediction and Optimization Analysis of a Solar Pond Powering a Thermoelectric Generator
,”
Sol. Energy
,
169
, pp.
658
672
. 10.1016/j.solener.2018.05.035
23.
Fathurrohman
,
M. I.
,
Maspanger
,
D. R.
, and
Sutrisno
,
S.
,
2015
, “
Vulcanization Kinetics and Mechanical Properties of Ethylene Propylene Diene Monomer Thermal Insulation
,”
Bull. Chem. React. Eng. Catal.
,
10
(
2
), pp.
104
110
. 10.9767/bcrec.10.2.6682.104-110
24.
Naresh
,
Y.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigations of Heat Transfer From an Internally Finned Two Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
112
, pp.
1658
1666
. 10.1016/j.applthermaleng.2016.10.084
25.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Waste Heat Recovery From a Biomass Heat Engine for Thermoelectric Power Generation Using Two-Phase Thermosyphons
,”
Renew. Energy
,
148
, pp.
1280
1291
. 10.1016/j.renene.2019.10.067
26.
Goswami
,
R.
, and
Das
,
R.
,
2019
, “
Investigation of Thermal and Electrical Performance in a Salt Gradient Solar Pond
,”
J. Phys. Conf. Ser.
,
1240
, p.
012111
. 10.1088/1742-6596/1240/1/012111
27.
Taggar
,
G. K.
,
Singh
,
R.
,
Kumar
,
R.
, and
Pathania
,
P. C.
,
2012
, “
First Report of Flower Chafer Beetle, Oxycetonia Versicolor, on Pigeonpea and Mungbean From Punjab, India
,”
Phytoparasitica
,
40
(
3
), pp.
207
211
. 10.1007/s12600-012-0222-8
28.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Energy Cogeneration Study of Red Mulberry (Morus Rubra)-Based Biomass
,”
Energy Sources A.
,
42
(
8
), pp.
979
1000
. 10.1080/15567036.2019.1602210
29.
Jadhao
,
J. S.
, and
Thombare
,
D. G.
,
2013
, “
Review on Exhaust Gas Heat Recovery for IC Engine
,”
Int. J. Eng. Innov. Technol.
,
2
(
12
), pp.
93
100
.
30.
Wu
,
C. Z.
,
Huang
,
H.
,
Zheng
,
S. P.
, and
Yin
,
X. L.
,
2002
, “
An Economic Analysis of Biomass Gasification and Power Generation in China
,”
Bioresource Technol.
,
83
(
1
), pp.
65
70
. 10.1016/S0960-8524(01)00116-X
31.
Panwar
,
N. L.
, and
Rathore
,
N. S.
,
2009
, “
Potential of Surplus Biomass Gasifier Based Power Generation: A Case Study of an Indian State Rajasthan
,”
Mitig. Adapt. Strateg. Glob. Change
,
14
(
8
), pp.
711
720
. 10.1007/s11027-009-9192-7
32.
Ghosh
,
S.
,
Das
,
T. K.
, and
Jash
,
T.
,
2004
, “
Sustainability of Decentralized Woodfuel-Based Power Plant: An Experience in India
,”
Energy
,
29
(
1
), pp.
155
166
. 10.1016/S0360-5442(03)00158-0
33.
Kumar
,
A.
,
Kumar
,
K.
,
Kaushik
,
N.
,
Sharma
,
S.
, and
Mishra
,
S.
,
2010
, “
Renewable Energy in India: Current Status and Future Potentials
,”
Renew. Sustain. Energy Rev.
,
14
(
8
), pp.
2434
2442
. 10.1016/j.rser.2010.04.003
34.
Leung
,
D. Y.
,
Yin
,
X. L.
, and
Wu
,
C. Z.
,
2004
, “
A Review on the Development and Commercialization of Biomass Gasification Technologies in China
,”
Renew. Sustain. Energy Rev.
,
8
(
6
), pp.
565
580
. 10.1016/j.rser.2003.12.010
35.
Ravindranath
,
N. H.
, and
Balachandra
,
P.
,
2009
, “
Sustainable Bioenergy for India: Technical, Economic and Policy Analysis
,”
Energy
,
34
(
8
), pp.
1003
1013
. 10.1016/j.energy.2008.12.012
36.
Singh
,
K.
, and
Das
,
R.
,
2016
, “
An Experimental and Multi-Objective Optimization Study of a Forced Draft Cooling Tower With Different Fills
,”
Energy Convers. Manage.
,
111
, pp.
417
430
. 10.1016/j.enconman.2015.12.080
You do not currently have access to this content.