Abstract

Nanometer-pore characteristic of unconventional reservoirs significantly enlarges the impact of the role that capillary pressure (pc) plays on the recovery mechanism. A growing number of research has been focused on understanding the high pc effect in tight and ultra-tight reservoir systems, but mainly numerical simulation models and experimental studies are investigated. This work proposes an alternate, semi-analytical solution that readily applies to the analysis of production performance of multi-fractured horizontal wells in unconventional formations, capturing the phase behavior and fluid property-alteration effects under significant pc influence found in these systems. Capillary pressure is considered as interfacial-tension (IFT)-dependent function that impacts fluid flow in the sense of phase behavior and fluid properties. To arrive at the solutions, the similarity method is applied to the governing system of multiphase partial differential equations, and the resulting system of ordinary differential equations is solved simultaneously for pressure and saturation via shooting method coupled with Runge–Kutta solver. The proposed solution is validated by matching against numerically simulated data generated by an in-house simulator. Both oil-dominate and gas-dominate examples are presented. We also apply the proposed method to examine the sensitivity of production performance to degree of undersaturation and critical saturations. Results show that the altered fluid property and phase behavior due to IFT-dependent pc have ineligible effects on recovery performance of multi-fractured horizontal wells, and specific effects on production rates and producing gas–oil ratio also tie closely to the mobility of each phase.

References

1.
Javadpour
,
F.
,
2009
, “
Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone)
,”
J. Can. Pet. Technol.
,
48
(
8
), pp.
16
21
. 10.2118/09-08-16-DA
2.
Clarkson
,
C. R.
,
Wood
,
J. M.
,
Burgis
,
S. E.
,
Aquino
,
S. D.
,
Freeman
,
M.
, and
Birss
,
V.
,
2012
, “
Nanopore Structure Analysis and Permeability Predictions for a Tight Gas/Shale Reservoir Using Low-Pressure Adsorption and Mercury Intrusion Techniques
,” SPE 155537.
3.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
, “
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
,”
Paper Presented at SPE Canada Unconventional Resources Conference
,
Calgary, AB
,
Mar. 13–14,
SPE 189829.
4.
Brusllovsky
,
A. I.
,
1992
, “
Mathematical Simulation of Phase Behavior of Natural Multicomponent Systems at High Pressures With an Equation of State
,”
SPE Reservoir Eng.
,
7
(
1
), pp.
117
122
. 10.2118/20180-PA
5.
Firincioglu
,
T.
,
Ozkan
,
E.
, and
Ozgen
,
C.
,
2012
, “
Thermodynamics of Multiphase Flow in Unconventional Liquids-Rich Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
, Paper SPE 159869,
Society of Petroleum Engineers
.
6.
Nojabaei
,
B.
,
Johns
,
R. T.
, and
Chu
,
L.
,
2013
, “
Effect of Capillary Pressure on Phase Behavior in Tight Rocks and Shales
,”
SPE Reservoir Eval. Eng.
,
16
(
3
), pp.
281
289
. 10.2118/159258-PA
7.
Alfi
,
M.
,
Nasrabadi
,
H.
, and
Banerjee
,
D.
,
2017
, “
Experimental Investigation of Confinement Effect on Phase Behavior of Hydrocarbons Using Lab-on-a-Chip Technology
,”
Fluid Phase Equilib.
,
423
, pp.
25
33
. 10.1016/j.fluid.2016.04.017
8.
Nojabaei
,
B.
,
2015
, “
Phase Behavior and Flow Analysis of Shale Reservoirs Using a Compositionally-Extended Black-Oil Approach
,” Ph.D. dissertation,
Pennsylvania State University
,
State College
.
9.
Siripatrachai
,
N.
,
Ertekin
,
T.
, and
Johns
,
R. T.
,
2017
, “
Compositional Simulation of Hydraulically Fractured Tight Formation Considering the Effect of Capillary Pressure on Phase Behavior
,”
SPE J.
,
22
(
4
), pp.
1046
1063
. 10.2118/179660-PA
10.
Teklu
,
T. W.
,
Alharthy
,
N.
,
Kazemi
,
H.
,
Yin
,
X.
,
Graves
,
R. M.
, and
AlSumaiti
,
A. M.
,
2014
, “
Phase Behavior and Minimum Miscibility Pressure in Nanopores
,”
SPE Reservoir Eval. Eng.
,
17
(
3
), pp.
396
403
. 10.2118/168865-PA
11.
Alharthy
,
N. S.
,
Teklu
,
T. W. W.
,
Nguyen
,
T. N.
,
Kazemi
,
H.
, and
Graves
,
R. M.
,
2016
, “
Nanopore Compositional Modeling in Unconventional Shale Reservoirs
,”
SPE Reservoir Eval. Eng.
,
19
(
3
), pp.
415
428
. 10.2118/166306-PA
12.
Khoshghadam
,
M.
,
Khanal
,
A.
, and
Lee
,
W. J.
,
2015
,
Numerical Study of Production Mechanisms and Gas-Oil Ratio Behavior of Liquid-Rich Shale Oil Reservoirs
,
Society of Petroleum Engineers
.
13.
Jiang
,
J.
, and
Younis
,
R. M.
,
2016
, “
Compositional Modeling of Enhanced Hydrocarbons Recovery for Fractured Shale Gas-Condensate Reservoirs With the Effects of Capillary Pressure and Multicomponent Mechanisms
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1262
1275
. 10.1016/j.jngse.2016.08.006
14.
Jones
,
J. R.
, and
Raghavan
,
R.
,
1988
, “
Interpretation of Flowing Well Response in Gas Condensate Wells
,”
SPE Form. Eval. J.
,
3
(
3
), pp.
578
594
. 10.2118/14204-PA
15.
Fevang
,
Ø
, and
Whitson
,
C. H.
,
1996
, “
Modeling Gas-Condensate Well Deliverability
,”
SPE Reserv. Eng.
,
11
(
4
), pp.
221
230
. 10.2118/30714-PA
16.
Bøe
,
A.
,
Skjaeveland
,
S. M.
, and
Whitson
,
C. H.
,
1989
, “
Two-Phase Pressure Test Analysis
,”
SPE Form. Eval.
,
4
(
4
), pp.
604
610
. 10.2118/10224-PA
17.
Camacho
,
R.
, and
Raghavan
,
R.
,
1989
, “
Boundary-Dominated Flow in Solution Gas-Drive Reservoirs
,”
SPE Reserv. Eng. J.
,
4
(
4
), pp.
503
512
. 10.2118/18562-PA
18.
Sureshjani
,
M. H.
, and
Gerami
,
S.
,
2011
, “
A New Model for Modern Production-Decline Analysis of Gas/Condensate Reservoirs
,”
J. Can. Pet. Technol.
,
50
(
7
), pp.
14
23
.
19.
Clarkson
,
C. R.
, and
Qanbari
,
F.
,
2016
, “
History Matching and Forecasting Tight Gas Condensate and Oil Wells by Use of an Approximate Semianalytical Model Derived From the Dynamic-Drainage-Area Concept
,”
SPE Reservoir Eval. Eng.
,
19
(
04
), pp.
540
552
. 10.2118/175929-PA
20.
Uzun
,
I.
,
Kurtoglu
,
B.
, and
Kazemi
,
H.
,
2016
, “
Multiphase Rate-Transient Analysis in Unconventional Reservoirs: Theory and Application
,”
SPE Reservoir Eval. Eng.
,
19
(
4
), pp.
553
566
. 10.2118/171657-PA
21.
Zhang
,
M.
,
Becker
,
M. D.
, and
Ayala
,
L. F.
,
2016
, “
A Similarity Method Approach for Early-Transient Multiphase Flow Analysis of Liquid-Rich Unconventional Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
572
586
. 10.1016/j.jngse.2015.11.044
22.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2017
, “
Analytical Study of Constant Gas/Oil-Ratio Behavior as an Infinite-Acting Effect in Unconventional Multiphase Reservoir Systems
,”
SPE J.
,
22
(
1
), pp.
289
299
. 10.2118/175079-PA
23.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2018
, “
A Semi-Analytical Solution to Compositional Flow in Liquid-Rich Gas Plays
,”
Fuel
,
212
, pp.
274
292
. 10.1016/j.fuel.2017.08.097
24.
Tabatabaie
,
S. H.
, and
Pooladi-Darvish
,
M.
,
2016
,”
Multiphase Linear Flow in Tight Oil Reservoirs
,
SPE Reservoir Eval. Eng.
,
20
(
1
), pp.
184
196
. 10.2118/180932-pa
25.
Zhang
,
M.
, and
Ayala
,
L. F.
,
2017
, “
Similarity-Based, Semi-Analytical Assessment of Capillary Pressure Effects in Very Tight, Liquid-Rich Gas Plays During Early-Transient Multiphase Analysis
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
189
206
. 10.1016/j.jngse.2017.04.031
26.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.
27.
Tiab
,
D.
, and
Donaldson
,
E. C.
,
2012
,
Petrophysics : Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties
,
Gulf Professional Publishing-Elsevier
,
Waltham
.
28.
Leverett
,
M. C.
,
1941
, “
Capillary Behavior in Porous Solids
,”
Trans. AIME
,
142
(
1
), pp.
152
169
. 10.2118/941152-G
29.
Peters
,
E. J.
,
2012
,
Advanced Petrophysics
,
Live Oak Book Company
,
Austin, TX
.
30.
Christoffersen
,
K. R.
, and
Whitson
,
C. H.
,
1995
, “
Gas/Oil Capillary Pressure of Chalk at Elevated Pressures
,”
SPE Form. Eval.
,
10
(
3
), pp.
153
159
. 10.2118/26673-PA
31.
Rahman
,
M. K.
,
Chen
,
Z.
, and
Rahman
,
S. S.
,
2003
, “
Modeling Time-Dependent Pore Pressure Due to Capillary and Chemical Potential Effects and Resulting Wellbore Stability in Shales
,”
ASME J. Energy Resour. Technol.
,
125
(
3
), pp.
169
176
. 10.1115/1.1595111
32.
Rezaveisi
,
M.
,
Sepehrnoori
,
K.
,
Pope
,
G. A.
, and
Johns
,
R. T.
,
2015
, “
Compositional Simulation Including Effect of Capillary Pressure on Phase Behavior
,”
Paper Presented at SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 8–30,
SPE 175135.
33.
Pederson
,
K. S.
, and
Christensen
,
P. L.
,
2007
,
Phase Behavior of Peroleum Reservoir Fluids
,
CRC Press, Taylor & Francis Group
,
London
.
34.
Whitson
,
C. H.
, and
Torp
,
S. B.
,
1983
, “
Evaluating Constant-Volume Depletion Data
,”
J. Pet. Technol.
,
35
(
3
), pp.
610
620
. 10.2118/10067-PA
35.
Li
,
B.
,
Bui
,
K.
, and
Akkutlu
,
I. Y.
,
2017
, “
Capillary Pressure in Nanopores: Deviation From Young-Laplace Equation
,”
Paper Presented at 79th EAGE Conference and Exhibition
,
Paris
,
June 12–15,
SPE 185801.
36.
Wang
,
W.
,
Shahvali
,
M.
, and
Su
,
Y.
,
2016
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
. 10.1115/1.4033860
37.
Walsh
,
M. P.
, and
Lake
,
L. W.
,
2003
, A Generalized Approach to Primary Hydrocarbon Recovery.
Handbook of Petroleum Exploration and Production
,
Elsevier
,
New York
.
38.
Boltzmann
,
L.
,
1894
, “
Integration Der Diffusions Gleichung Bei Variabein Diffusions Coefficienten
,”
Ann Der Physik Und Chemic
,
53
, pp.
959
964
. 10.1002/andp.18942891315
39.
Ayirala
,
S. C.
, and
Rao
,
D. N.
,
2006
, “
A New Mechanistic Parachor Model to Predict Dynamic Interfacial Tension and Miscibility in Multicomponent Hydrocarbon Systems
,”
J. Colloid Interface Sci.
,
299
(
1
), pp.
321
331
. 10.1016/j.jcis.2006.01.068
40.
Mott
,
R.
,
Cable
,
A.
, and
Spearing
,
M.
,
2000
, “
Measurements and Simulation of Inertial and High Capillary Number Flow Phenomena in Gas-Condensate Relative Permeability
,”
Paper Presented at SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 1–4,
SPE 62935.
41.
Ma
,
D.
,
Liu
,
C.
, and
Cheng
,
C.
,
2015
, “
New Relationship Between Resistivity Index and Relative Permeability
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032904
.
42.
Al Ghamdi
,
B. N.
, and
Ayala
,
H. L. F.
,
2017
, “
Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs Using Compositional Simulation
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032910
. 10.1115/1.4035905
43.
van Genuchten
,
M. T.
,
1980
, “
A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
,”
Soil Sci. Soc. Am. J.
,
44
(
5
), pp.
892
898
. 10.2136/sssaj1980.03615995004400050002x
44.
Becker
,
M. D.
,
Zhang
,
M.
, and
Ayala
,
L. F.
,
2016
, “
On the Pressure-Saturation Path in Infinite-Acting Unconventional Liquid-Rich Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
97
113
. 10.1016/j.jngse.2016.08.007
45.
Neshat
,
S. S.
, and
Pope
,
G. A.
,
2017
, “
Compositional Three-Phase Relative Permeability and Capillary Pressure Models Using Gibbs Free Energy
,”
SPE Reservoir Simulation Conference
,
Montgomery
,
Feb. 20–22
, SPE 182592.
You do not currently have access to this content.