Abstract

Because of a large amount of natural gas dissolved in the formation water of high-temperature and high-pressure (HTHP) water-soluble gas reservoirs, the water vapor content in water-soluble gas reservoirs is generally maintained under a supersaturated state; meanwhile, natural gas has a high carbon dioxide fraction, which significantly affects the water vapor content. Application of the conventional method to calculate the water content of HTHP water-soluble gas reservoirs leads to errors. In this work, the water content of HTHP water-soluble gas reservoirs was studied through laboratory experiments and theoretical research, and the main factors affecting water content were studied. Results show that the water content of water-soluble gas reservoirs decreases as pressure increases. The water content decreases faster in the low-pressure stage, while the decease of water content in the high-pressure stage is relatively steady. The water content of gas reservoirs increases with increasing temperature. When the temperature is lower than 100 °C, the change is slow; when the temperature is higher than 100 °C, the change is fast. The water content of gas reservoirs is affected by temperature during the low-pressure stage. The water content in the high-temperature stage is obviously affected by pressure; the water content of the gas reservoir is also affected by the carbon dioxide content of the natural gas component and the salinity of the formation water. Higher carbon dioxide content and lower formation water salinity yield higher water content. Furthermore, error analysis of the conventional water content prediction method and the measurement shows inconsistency in measurement and calculation. The error between the two methods is large, with an average of 54.88%. Based on the experiment, a mathematical model for calculating the water content of HTHP water-soluble gas reservoirs was established considering pressure, temperature, salinity, and natural gas composition. The predicted water vapor content of natural gas is close to the experimental value with a high precision. The average relative error between the measured and model calculated value is about 8.72%.

References

1.
Huang
,
X.
,
Guo
,
X.
,
Zhou
,
X.
,
Shen
,
C.
,
Lu
,
X.
,
Qi
,
Z.
,
Xiao
,
Q.
, and
Yan
,
W.
,
2019
, “
Effects of Water Invasion Law on Gas Wells in High Temperature and High Pressure Gas Reservoir With a Large Accumulation of Water-Soluble Gas
,”
J. Nat. Gas Sci. Eng.
,
62
(
2
), pp.
68
78
. 10.1016/j.jngse.2018.11.029
2.
Sun
,
Z.
,
Xu
,
Y.
,
Yao
,
J.
,
Sun
,
Z.
, and
Liu
,
J.
,
2014
, “
Numerical Simulation of Produced Water Reinjection Technology for Water-Soluble Gas Recovery
,”
J. Nat. Gas Sci. Eng.
,
21
(
11
), pp.
700
711
. 10.1016/j.jngse.2014.09.032
3.
Ghiasi
,
M. M.
,
Alireza
,
B.
, and
Sohrab
,
Z.
,
2014
, “
Estimation of the Water Content of Natural Gas Dried by Solid Calcium Chloride Dehydrator Units
,”
Fuel
,
117
(
1
), pp.
33
42
. 10.1016/j.fuel.2013.09.086
4.
Georgios
,
K.
,
Einar
,
W.
,
Jorgen
,
L.
,
Georgios
,
M.
, and
Even
,
S.
,
2007
, “
Data and Prediction of Water Content of High Pressure Nitrogen, Methane and Natural Gas
,”
Fluid Phase Equilib.
,
252
(
2
), pp.
162
174
. 10.1016/j.fluid.2007.03.001
5.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy. Resour. Technol.
,
139
(
1
), p.
012903
. 10.1115/1.4033856
6.
Wieland
,
G.
, and
Fisher
,
K.
,
1987
,
Water Determination by Karl Fischer Titration: Theory and Applications
,
Git Verlang
, pp.
58
72
.
7.
Rushing
,
J.
,
Newsham
,
K.
,
Van
,
F.
,
Kees
,
C.
,
Mehta
,
S.
, and
Moore
,
G.
,
2008
, “
The Catalytic Effects of Nonhydrocarbon Contaminants on Equilibrium Water Vapor Content for a Dry Gas at HP/HT Reservoir Conditions
,”
CIPC/SPE Gas Technology Symposium 2008 Joint Conference
,
Calgary, Alberta, Canada
,
June 16–19
,
SPE Paper No.SPE-114517-MS
.
8.
Bian
,
X.
,
Du
,
Z.
, and
Tang
,
Y.
,
2011
, “
Experimental Determination and Prediction of the Compressibility Factor of High CO2 Content Natural Gas With and Without Water Vapor
,”
J. Nat. Gas Chem.
,
20
(
4
), pp.
364
371
. 10.1016/S1003-9953(10)60210-1
9.
Tong
,
Z.
,
Zhao
,
G.
, and
Wei
,
S.
,
2017
, “
A Novel Intermittent Gas Lifting and Monitoring System Toward Liquid Unloading for Deviated Wells in Mature Gas Field
,”
ASME J. Energy. Resour. Technol.
,
140
(
5
), p.
052906
. 10.1115/1.4038623
10.
Tabasinejad
,
F.
,
Moore
,
R.
,
Mehta
,
S.
,
Van
,
F.
,
Kees
,
C.
,
Barzin
,
Y.
,
Rushing
,
J.
, and
Newsham
,
K.
,
2010
, “
Density of High Pressure and Temperature Gas Reservoirs: Effect of Non-Hydrocarbon Contaminants on Density of Natural Gas Mixtures
,”
SPE Western Regional Meeting
,
Anaheim, CA
,
May 27–29
,
SPE Paper No. SPE-133595-MS
.
11.
Seo
,
M.
,
Kang
,
J.
, and
Lee
,
C.
,
2011
, “
Water Solubility Measurements of the CO2 Rich Liguid Phase in Equilibrium With Gas Hydrates Using an Indirect Method
,”
J. Chem. Eng. Data
,
56
(
5
), pp.
2626
2629
. 10.1021/je2001232
12.
Chapoy
,
A.
,
Haghighi
,
H.
,
Burgass
,
R.
, and
Tohidi
B.
,
2012
, “
On the Phase Behaviour of the (Carbon Dioxide + Water) Systems at Low Temperatures: Experimental and Modeling
,”
J. Chem. Thermodyn.
,
47
(
4
), pp.
6
12
. 10.1016/j.jct.2011.10.026
13.
Kim
,
S.
,
Kim
,
Y.
,
Park
,
B. H.
,
Lee
,
J. H.
, and
Kang
,
J. W.
,
2012
, “
Measurement and Correlation of Solubility of Water in Carbon Dioxide-Rich Phase
,”
Fluid Phase Equilib.
,
328
(
8
), pp.
9
12
. 10.1016/j.fluid.2012.05.013
14.
Zhang
,
L.
,
Burgass
,
R.
,
Chapoy
,
A.
, and
Tohidi
,
B.
,
2011
, “
Measurement and Modeling of Water Content in Low Temperature Hydrate–Methane and Hydrate–Natural Gas Systems
,”
J. Chem. Eng. Data
,
56
(
6
), pp.
2932
2935
. 10.1021/je2001655
15.
Ronald
,
D.
,
Zheming
,
W.
,
Andrzej
,
A.
,
Peiming
,
W.
, and
Andrew
,
R.
,
2012
, “
A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide–Water–Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions
,”
Chem. Geol.
,
322
(
9
), pp.
151
171
. 10.1016/j.chemgeo.2012.07.008
16.
Wang
,
Z.
,
Felmy
,
A.
,
Thompson
,
C. J.
,
Loring
,
J. S.
,
Joly
,
A. G.
,
Rosso
,
K. M.
,
Schaef
,
H. T.
, and
Dixon
,
D. A.
,
2013
, “
Near-infrared Spectroscopic Investigation of Water in Super Critical CO2 and the Effect of CaCl
,”
Fluid Phase Equilib
,
338
(
1
), pp.
155
163
. 10.1016/j.fluid.2012.11.012
17.
de Azevedo Medeiros
,
F.
,
Shiguematsu
,
F. M.
,
Campos
,
F. B.
,
Segtovich
,
I. S. V.
,
da Silva Ourique
,
J. E.
,
Barreto
,
A. G.
, and
Tavares
,
F. W.
,
2016
, “
Alternative EoS-Based Model for Predicting Water Content, Metastable Phases and Hydrate Formation in Natural Gas Systems
,”
J. Nat. Gas Sci. Eng.
,
36
(
11
), pp.
550
562
. 10.1016/j.jngse.2016.10.058
18.
Nasrifar
,
K.
,
Alavi
,
F.
, and
Javanmardi
,
J.
,
2017
, “
Prediction of Water Content of Natural Gases Using the PC-SAFT Equation of State
,”
Fluid Phase Equilib.
,
453
(
15
), pp.
40
45
. 10.1016/j.fluid.2017.08.023
19.
Carroll
,
J.
,
2003
,
Natural Gas Hydrates: A Guide for Engineers
,
Gulf Professional Publishing
,
New York
.
20.
Bukacek
,
R.
,
1959
,
Equilibrium Moisture Content of Natural Gases
,
Institute of Gas Technology
,
New York
.
21.
Sloan
,
E.
,
1998
,
Clathrate Hydrates of Natural Gases
,
Marcel Dekker Inc.
,
New York
.
22.
Khaled
,
A.
,
2007
,
A Prediction of Water Content in Sour Natural Gas
,
King Saud University
,
Saudi Arabia
.
23.
Bahadori
,
A.
,
Vuthaluru
,
H. B.
, and
Mokhateb
,
S.
,
2009
, “
Rapid Estimation of Water Content of Sour Nature Gases
,”
J. Jpn. Petrol. Inst.
,
52
(
5
), pp.
270
274
. 10.1627/jpi.52.270
24.
Zhu
,
L.
,
Li
,
L.
,
Zhu
,
J.
,
Qin
,
L.
, and
Fan
,
J.
,
2015
, “
Analytical Methods to Calculate Water Content in Natural Gas
,”
Chem. Eng. Res. Des.
,
93
(
1
), pp.
148
162
. 10.1016/j.cherd.2014.05.021
25.
Behr
,
W.
,
1983
, “
Correlation Eases Absorber Equilibrium Line Calculation for TEG-Natural Gas Hydration
,”
Oil Gas J.
,
81
(
15
), pp.
96
98
.
26.
Kazim
,
F.
,
1996
, “
Quickly Calculate the Water Content of Natviral Gas
,”
Hydrocarbon Process.
,
75
(
3
), pp.
105
108
.
27.
McKetta J
,
J.
, and
Katz D
,
L.
,
1948
, “
Methane-n-Butane-Water System in Two-and Three-Phase Regions
,”
Ind. Eng. Chem. Res.
,
40
(
5
), pp.
853
863
. 10.1021/ie50461a018
28.
Katz
,
D. L.
,
1959
,
Handbook of Natural Gas Engineering
,
McGraw-Hill
,
New York
.
29.
Lin
,
Z.
,
Junming
,
F.
,
Jia
,
Z.
,
Li
,
Q.
, and
Luling
,
L.
,
2014
, “
Formula Calculation Methods of Water Content in Sweet Natural Gas and Their Adaptability Analysis
,”
Nat. Gas Ind. B
,
1
(
2
), pp.
144
149
. 10.1016/j.ngib.2014.11.004
30.
Li
,
S.
,
2008
,
Natural Gas Engineering
,
Petroleum Industry Press
, pp.
112
128
(
in Chinese
).
You do not currently have access to this content.