Abstract

Casing strings and liners are important subsurface structural components in petroleum and in geothermal wells. After the casing string has been run in hole, it is cemented to the formation by pumping a sequence of spacer fluids and cement slurry into the annulus outside the string. Spacer fluids are usually pumped ahead of the cement slurry to displace the drilling fluid from the annulus that is to be cemented and thereby avoid contamination of the cement slurry. Fluid displacements are governed by inertia, buoyancy, and viscosity effects, in addition to being strongly influenced by the annular geometry. Poor centralization of the casing or irregularities such as washouts can influence the displacement flows both locally and over long axial distances. We present three-dimensional numerical simulations of the displacement flow involving two viscoplastic fluids in the vicinity of a symmetric local hole enlargement. We focus on laminar flow regimes in the regular part of the annulus and investigate how the volumetric flowrate and the mass density difference between the fluids affect the displacement efficiency in the regular and the irregular parts of the annulus. This study considers viscoplastic displacement flows in a near-vertical, irregular annulus and is an extension of a previous publication that focused on a near-horizontal annulus. We contextualize our simulations by comparison to industry guidelines for effective and steady laminar displacements in the regular, near-vertical annulus. Here, eccentricity favors flow in the wider sector of the annulus, while a positive density difference between the fluids generates secondary, azimuthal flow toward the narrow side of the annulus. In the enlarged and irregular section, both the axial bulk velocity and casing eccentricity decrease sharply and buoyancy becomes more pronounced compared to in the regular annulus. We quantify and discuss the effects of local hole enlargements on displacement efficiencies. Simulations of cementing flows can aid in optimizing fluid properties and pump rates, including when the wellbore has suspected or confirmed zones of irregular geometries.

References

1.
Nelson
,
E. B.
, and
Guillot
,
D.
, eds.,
2006
,
Well Cementing
, 2 ed.,
Schlumberger
,
Sugar Land, TX
.
2.
Walton
,
I. C.
, and
Bittleston
,
S. H.
,
1991
, “
The Axial Flow of a Bingham Plastic in a Narrow Eccentric Annulus
,”
J. Fluid Mech.
,
222
, pp.
39
60
. 10.1017/S002211209100099X
3.
Szabo
,
P.
, and
Hassager
,
O.
,
Nov 1992
, “
Flow of Viscoplastic Fluids in Eccentric Annular Geometries
,”
J. Non-Newtonian Fluid Mech.
,
45
(
2
), pp.
149
169
. 10.1016/0377-0257(92)85001-D
4.
Agbasimalo
,
N.
, and
Radonjic
,
M.
,
2014
, “
Experimental Study of the Impact of Drilling Fluid Contamination on the Integrity of Cement-Formation Interface
,”
ASME J. Energy Resour. Technol
,
136
(4), p.
042908
. 10.1115/1.4027566
5.
Haciislamoglu
,
M.
, and
Langlinais
,
J.
,
1990
, “
Non-Newtonian Flow in Eccentric Annuli
,”
ASME J. Energy Resour. Technol
,
112
(3), pp.
163
169
. 10.1115/1.2905753
6.
Hussain
,
Q. E.
, and
Sharif
,
M. A. R.
,
1998
, “
Analysis of Yield-Power-Law Fluid Flow in Irregular Eccentric Annuli
,”
ASME J. Energy Resour. Technol
,
120
(3), pp.
201
207
. 10.1115/1.2795036
7.
McLean
,
R. H.
,
Manry
,
C. W.
, and
Whitaker
,
W. W.
,
1967
, “
Displacement Mechanics in Primary Cementing
,”
J. Petrol. Technol.
,
19
(
2
), pp.
251
260
. SPE 1488. 10.2118/1488-PA
8.
Clark
,
C. R.
, and
Carter
,
G. L.
,
July 1973
, “
Mud Displacement With Cement Slurries
,”
J. Petrol. Technol.
,
25
(
7
), pp.
775
783
. SPE 4090. 10.2118/4090-PA
9.
Lockyear
,
C. F.
, and
Hibbert
,
A. P.
,
Dec. 1989
, “
Integrated Primary Cementing Study Defines Key Factors for Field Success
,”
J. Petrol. Technol.
,
41
(
12
), pp.
1320
1325
, SPE 18376. 10.2118/18376-PA
10.
Guillot
,
D. J.
,
Froelich
,
B.
,
Caceres
,
E.
, and
Verbakel
,
R.
,
2008
, “
Are Casing Centralization Calculations Really Conservative
,”
IADC/SPE Drilling Conference
,
Orlando, FL
,
Mar. 4–6
, pp.
1
11
, Paper No. IADC/SPE 112725.
11.
Jakobsen
,
J.
,
Sterri
,
N.
,
Saasen
,
A.
,
Aas
,
B.
,
Kjosnes
,
I.
, and
Vigen
,
A.
,
1991
, “
Displacements in Eccentric Annuli During Primary Cementing in Deviated Wells
,”
SPE Production Operations Symposium
,
Apr. 7–9
,
Society of Petroleum Engineers
,
SPE Paper No. 21686
.
12.
Tehrani
,
M. A.
,
Bittleston
,
S. H.
, and
Long
,
P. J. G.
,
1993
, “
Flow Instabilities During Annular Displacement of One Non-Newtonian Fluid by Another
,”
Exp. Fluids
,
14
(
4
), pp.
246
256
. 10.1007/BF00194015
13.
Malekmohammadi
,
S.
,
Carrasco-Teja
,
M.
,
Storey
,
S.
,
Frigaard
,
I. A.
, and
Martinez
,
D. M.
,
2010
, “
An Experimental Study of Laminar Displacement Flows in Narrow Vertical Eccentric Annuli
,”
J. Fluid. Mech.
,
649
, pp.
371
3984
10.1017/S0022112009993508
14.
Couturier
,
M.
,
Guillot
,
D.
,
Hendriks
,
H.
, and
Callet
,
F.
,
1990
, “
Design Rules And Associated Spacer Properties For Optimal Mud Removal in Eccentric Annuli
,” CIM/SPE International Technical Meeting, pp.
1
8
, Paper No. SPE 21594.
15.
Théron
,
B. E.
,
Bodin
,
D.
, and
Fleming
,
J.
,
2002
, “
Optimization of Spacer Rheology Using Neural Network Technology
,”
IADC/SPE Drilling Conference
, pp.
1
8
,
Paper No. IADC/SPE 74498
.
16.
Pelipenko
,
S.
, and
Frigaard
,
I. A.
,
2004
, “
Visco-Plastic Fluid Displacements in Near-Vertical Narrow Eccentric Annuli: Prediction of Travelling-Wave Solutions and Interfacial Instability
,”
J. Fluid Mech.
,
520
, pp.
343
377
. 10.1017/S0022112004001752
17.
Bittleston
,
S. H.
,
Ferguson
,
J.
, and
Frigaard
,
I. A.
,
2002
, “
Mud Removal and Cement Placement During Primary Cementing of an Oil Well—Laminar Non-Newtonian Displacements in an Eccentric Annular Hele-Shaw Cell
,”
J. Eng. Math.
,
43
(
2
), pp.
229
253
. 10.1023/A:1020370417367
18.
Plácido
,
J. C. R.
,
Santos
,
H. M. R.
, and
Galeano
,
Y. D.
,
2002
, “
Drillstring Vibration and Wellbore Instability
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
217
222
. 10.1115/1.1501302
19.
Skadsem
,
H. J.
,
Saasen
,
A.
, and
Håvardstein
,
S.
,
2017
, “
Casing Centralization in Irregular Wellbores
,”
Proceedings of the ASME 2018 36th International Conference on Ocean Offshore and Arctic Engineering
,
Trondheim, Norway
, pp.
1
10
,
Paper No. OMAE2017-61106
.
20.
Fjær
,
E.
,
Holt
,
R. M.
,
Nes
,
O.-M.
, and
Sønstebø
,
E. F.
,
2002
, “
Mud Chemistry Effects on Time-Delayed Borehole Stability Problems in Shales
,”
SPE/ISRM Rock Mechanics Conference
,
Irving, TX
,
Oct. 20–23
,
SPE Paper No. 78163
.
21.
Nes
,
O. M.
,
Fjær
,
E.
,
Tronvoll
,
J.
,
Kristiansen
,
T. G.
, and
Horsrud
,
P.
,
2012
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
ASME J. Energy Resour. Technol
,
134
(3), p.
032802
. 10.1115/1.4006866
22.
Roustaei
,
A.
, and
Frigaard
,
I. A.
,
2013
, “
The Occurrence of Fouling Layers in the Flow of a Yield Stress Fluid Along a Wavy-Walled Channel
,”
J. Non-Newt. Fluid Mech.
,
198
, pp.
109
124
. 10.1016/j.jnnfm.2013.03.005
23.
Roustaei
,
A.
,
Gosselin
,
A.
, and
Frigaard
,
I. A.
,
2015
, “
Residual Drilling Mud During Conditioning of Uneven Boreholes in Primary Cementing. Part 1: Rheology and Geometry Effects in Non-Inertial Flows
,”
J. Non-Newt. Fluid Mech.
,
220
, pp.
87
98
. 10.1016/j.jnnfm.2014.09.019
24.
Roustaei
,
A.
, and
Frigaard
,
I. A.
,
2015
, “
Residual Drilling Mud During Conditioning of Uneven Boreholes in Primary Cementing. Part 2: Steady Laminar Inertial Flows
,”
J. Non-Newt. Fluid Mech.
,
226
, pp.
1
15
. 10.1016/j.jnnfm.2015.09.003
25.
Zuiderwijk
,
J. J. M.
,
1974
, “
Mud Displacement In Primary Cementation
,”
SPE European Spring Meeting
,
May 29–30
,
Society of Petroleum Engineers
, SPE Paper No. 4830.
26.
Kimura
,
K.
,
Takase
,
K.
,
Griffith
,
J. E.
,
Gibson
,
R. A.
,
Porter
,
D. S.
, and
Becker
,
T. E.
,
1999
, “
Custom-Blending Foamed Cement for Multiple Challenges
,”
SPE/IADC Middle East Drilling Technology Conference
,
Nov. 8–10
,
Society of Petroleum Engineers
,
SPE Paper No. 57585
.
27.
Skadsem
,
H. J.
,
Kragset
,
S.
, and
Sørbø
,
J.
,
2019
, “
Cementing an Irregular Annulus Geometry: Full-Scale Experiments and 3D Simulations
,”
SPE/IADC Drilling Conference and Exhibition
,
Hague, The Netherlands
, Mar. 5–7, pp.
1
15
,
SPE/IADC Paper No. 194091
.
28.
Lund
,
B.
,
Ytrehus
,
J. D.
,
Taghipour
,
A.
,
Divyankar
,
S.
, and
Saasen
,
A.
,
2018
, “
Fluid-Fluid Displacement for Primary Cementing in Deviated Washout Sections
,”
Proceedings of the ASME 2018 37th International Conference on Ocean Offshore and Arctic Engineering
,
Madrid, Spain
, pp.
1
9
,
Paper No. OMAE2018-78707
.
29.
Renteria
,
A.
,
Maleki
,
A.
,
Frigaard
,
I. A.
,
Lund
,
B.
,
Taghipour
,
A.
, and
Ytrehus
,
J. D.
,
2019
, “
Effects of Irregularity on Displacement Flows in Primary Cementing of Highly Deviated Wells
,”
J. Petrol. Sci. Eng.
,
172
, pp.
662
680
. 10.1016/j.petrol.2018.08.045
30.
Skadsem
,
H. J.
,
Kragset
,
S.
,
Lund
,
B.
,
Ytrehus
,
J. D.
, and
Taghipour
,
A.
,
2019
, “
Annular Displacement in a Highly Inclined Irregular Wellbore: Experimental and Three-Dimensional Numerical Simulations
,”
J. Petrol. Sci. Eng.
,
172
, pp.
998
1013
. 10.1016/j.petrol.2018.09.007
31.
Kragset
,
S.
, and
Skadsem
,
H. J.
,
2018
, “
Effect of Buoyancy and Inertia on Viscoplastic Fluid: Fluid Displacement in an Inclined Eccentric Annulus With An Irregular Section
,”
ASME 2018 37th International Conference on Ocean Offshore and Arctic Engineering, Vol. 8: Polar and Arctic Sciences and Technology: Petroleum Technology
, pp.
1
10
,
Paper No. OMAE2018-77519
.
32.
Etrati
,
A.
,
Roustaei
,
A.
, and
Frigaard
,
I. A.
,
2020
, “
Strategies for Mud-removal From Washouts During Cementing of Vertical Surface Casing
,”
J. Petrol. Sci. Eng.
,
195
, p.
107454
. 10.1016/j.petrol.2020.107454
33.
Aas
,
B.
,
Sørbø
,
J.
,
Stokka
,
S.
,
Saasen
,
A.
,
Godøy
,
R.
,
Lunde
,
Ø.
, and
Vrålstad
,
T.
,
2016
, “
Cement Placement With Tubing Left in Hole During Plug and Abandonment Operations
,”
IADC/SPE Drilling Conference and Exhibition
,
Fort Worth, TX
,
Mar. 1–3
, pp.
1
13
,
Paper No. IADC/SPE 178840
.
34.
Papanastasiou
,
T. C.
,
1987
, “
Flows of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
404
. 10.1122/1.549926
35.
Hanks
,
R. W.
,
1979
, “
The Axial Laminar Flow of Yield-Pseudoplastic Fluids in a Concentric Annulus
,”
Ind. Eng. Chem. Process Des. Dev.
,
18
(
3
), pp.
488
493
. 10.1021/i260071a024
36.
Tehrani
,
A.
,
Ferguson
,
J.
, and
Bittleston
,
S. H.
,
1992
, “
Laminar Displacement in Annuli: A Combined Experimental and Theoretical Study
,”
SPE Annual Technical Conference and Exhibition
,
Oct. 4–7
,
Society of Petroleum Engineers
,
SPE Paper No. 24569
.
37.
Tardy
,
P. M. J.
, and
Bittleston
,
S. H.
,
2015
, “
A Model for Annular Displacements of Wellbore Completion Fluids Involving Casing Movement
,”
J. Petrol. Sci. Eng.
,
126
, pp.
105
123
. 10.1016/j.petrol.2014.12.018
You do not currently have access to this content.