Abstract

The role of heating, ventilation, and air conditioning systems (HVAC) in spreading SARS-CoV-2 is a complex topic and has not been studied thoroughly. There are some existing strategies and technologies for health and high performance buildings; however, applications to other types of buildings come at large energy penalty: cost; design, regulations and standards changes, and varied public perception. In the present work, different factors and strategies are reviewed and discussed and suggested mitigations and solutions are provided including the required air flowrates with the presence of infectors with and without mask and disinfection techniques including ultraviolet (UV) light. Experimental and numerical research in open literature suggests that the airborne transmission of SARS-CoV-2 is sufficiently likely. However, in situ detailed experimental studies are still needed to understand the different scenarios of the virus spread. Displacement ventilation, underfloor air distribution, chilled beams, radiant ceiling panels, and laminar flow systems have varied effectiveness. High-efficiency particulate arrestance (HEPA) filters and UV light can clean viruses but at high energy cost. Suggested solutions to reduce the infection probability include recommended levels of ventilation and a combination of virus sampling technologies including cyclones, liquid impinger, filters, electrostatic precipitators, and water-based condensation.

References

1.
ASHRAE
,
2020
, “
ASHRAE Statements Regarding Transmission of SARS-CoV-2 and the Operation of HVAC Systems During the COVID-19 Pandemic
,” https://www.ashrae.org/technical-resources/resources#:~:text=Trans mission%20of%20SARS-CoV-2, Accessed August 23, 2020.
2.
Buonanno
,
G.
,
Morawska
,
L.
, and
Stabile
,
L.
,
2020
, “
Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-2 Infection: Prospective and Retrospective Applications
,” 10.1101/2020.06.01.20118984
3.
Correia
,
G.
,
Rodrigues
,
L.
,
da Silva
,
G. M.
, and
Gonçalves
,
T.
,
2020
, “
Airborne Route and Bad Use of Ventilation Systems as Non-Negligible Factors in SARS-CoV-2 Transmission
,”
Med. Hypotheses
,
141
, pp.
109781
. 10.1016/j.mehy.2020.109781
4.
McKinney
,
K. R.
,
Gong
,
Y. Y.
, and
Lewis
,
T. G.
,
2006
, “
Environmental Transmission of SARS at Amoy Gardens
,”
J. Environ. Health
,
68
(
9
), pp.
26
30
.
6.
Lu
,
J.
,
Gu
,
J.
,
Li
,
K.
,
Xu
,
C.
,
Su
,
W.
,
Lai
,
Z.
,
Zhou
,
D.
,
Yu
,
C.
,
Xu
,
B.
, and
Yang
,
Z.
,
2020
, “
COVID-19 Outbreak Associated With Air Conditioning in Restaurant, Guangzhou, China, 2020
,”
Emerging Infect. Dis.
,
26
(
7
), p.
1628
. 10.3201/eid2607.200764
7.
Li
,
Y.
,
Qian
,
H.
,
Hang
,
J.
,
Chen
,
X.
,
Hong
,
L.
,
Liang
,
P.
,
Li
,
J.
,
Xiao
,
S.
,
Wei
,
J.
, and
Liu
,
L.
,
2020
, “
Min Kang “Evidence for Probable Aerosol Transmission of SARS-CoV-2 in a Poorly Ventilated Restaurant
,”
medRxiv.
10.1101/2020.04.16.20067728
8.
Zhen
,
J.
,
Chan
,
C.
,
Schoonees
,
A.
,
Apatu
,
E.
,
Thabane
,
L.
, and
Young
,
T.
,
2020
, “
Transmission of Respiratory Viruses When Using Public Ground Transport : A Rapid Review to Inform Public Health Recommendations During the COVID-19 Pandemic
,”
S. Afr. Med. J.
.
9.
Godri Pollitt
,
K. J.
,
Peccia
,
J.
,
Ko
,
A. I.
,
Kaminski
,
N.
,
Dela Cruz
,
C. S.
,
Nebert
,
D. W.
,
Reichardt
,
J. K. V.
,
Thompson
,
D. C.
, and
Vasiliou
,
V.
,
2020
, “
COVID-19 Vulnerability: The Potential Impact of Genetic Susceptibility and Airborne Transmission
,”
Hum. Genomics
,
14
(
1
), pp.
1
7
. 10.1186/s40246-020-00267-3
10.
Volgenant
,
C. M. C.
,
Persoon
,
I. F.
,
de Ruijter
,
R. A. G.
, and
de Soet
,
J. J.
,
2020
, “
Infection Control in Dental Health Care During and After the SARS-CoV-2 Outbreak
,”
Oral Dis.
,
2020
. 10.1111/odi.13408
11.
Guzman
,
M.
,
2020
, “
Bioaerosol Size Effect in COVID-19 Transmission
,”
Preprints
,
2020
, pp.
1
10
. 10.20944/PREPRINTS202004.0093.V1
12.
Vuorinen
,
V.
,
Aarnio
,
M.
,
Alava
,
M.
,
Alopaeus
,
V.
,
Atanasova
,
N.
,
Auvinen
,
M.
,
Balasubramanian
,
N.
,
Bordbar
,
H.
,
Erästö
,
P.
,
Grande
,
R.
,
Hayward
,
N.
,
Hellsten
,
A.
,
Hostikka
,
S.
,
Hokkanen
,
J.
,
Kaario
,
O.
,
Karvinen
,
A.
,
Kivistö
,
I.
,
Korhonen
,
M.
,
Kosonen
,
R.
,
Kuusela
,
J.
,
Lestinen
,
S.
,
Laurila
,
E.
,
Nieminen
,
H. J.
,
Peltonen
,
P.
,
Pokki
,
J.
,
Puisto
,
A.
,
Råback
,
P.
,
Salmenjoki
,
H.
,
Sironen
,
T.
, and
Österberg
,
M.
,
2020
, “
Modelling Aerosol Transport and Virus Exposure With Numerical Simulations in Relation to SARS-CoV-2 Transmission by Inhalation Indoors
,”
Saf. Sci.
,
130
, p.
104866
. 10.1016/j.ssci.2020.104866
13.
Dbouk
,
T.
, and
Drikakis
,
D.
,
2020
, “
On Coughing and Airborne Droplet Transmission to Humans
,”
Phys. Fluids
,
32
(
5
), p.
053310
. 10.1063/5.0011960
14.
Seminara
,
G.
,
Carli
,
B.
,
Forni
,
G.
,
Fuzzi
,
S.
,
Mazzino
,
A.
, and
Rinaldo
,
A.
,
2020
, “
Biological Fluid Dynamics of Airborne COVID-19 Infection
,”
Rendiconti Lincei.
,
31
, pp.
505
537
. 10.1007/s12210-020-00938-2
15.
Pluchino
,
A.
,
2020
, “
A Novel Methodology for Epidemic Risk Assessment: The Case of COVID-19 Outbreak in Italy
,”
physics.soc-ph
, (arXiv:2004.02739 [physics.soc-ph]), pp.
1
37
.
16.
West
,
R.
,
Michie
,
S.
,
Rubin
,
G. J.
, and
Amlôt
,
R.
,
2020
, “
Applying Principles of Behaviour Change to Reduce SARS-CoV-2 Transmission
,”
Nat. Hum. Behav.
,
4
(
5
), pp.
451
459
. 10.1038/s41562-020-0887-9
17.
Siddiqui
,
R.
, and
Ahmed Khan
,
N.
,
2020
, “
Centralized Air-Conditioning and Transmission of Novel Coronavirus
,”
Pathog. Global Health
,
114
(
5
), pp.
228
229
. 10.1080/20477724.2020.1765653
18.
Saran
,
S.
,
Gurjar
,
M.
,
Baronia
,
A.
,
Sivapurapu
,
V.
,
Ghosh
,
P. S.
,
Raju
,
G. M.
, and
Maurya
,
I.
,
2020
, “
Heating, Ventilation and Air Conditioning (HVAC) in Intensive Care Unit
,”
Crit. Care
,
24
(
1
), pp.
1
11
. 10.1186/s13054-020-02907-5
19.
Shublaq
,
M.
, and
Sleiti
,
A. K.
,
2020
, “
Experimental Analysis of Water Evaporation Losses in Cooling Towers Using Filters
,”
Appl. Therm. Eng.
,
175
, pp.
115418
. 10.1016/j.applthermaleng.2020.115418
20.
Naimaster
,
E. J.
, and
Sleiti
,
A. K.
,
2013
, “
Potential of SOFC CHP Systems for Energy-Efficient Commercial Buildings
,”
Energy Build.
,
61
, pp.
153
160
. 10.1016/j.enbuild.2012.09.045
21.
Salehi
,
M.
,
Sleiti
,
A. K.
, and
Idem
,
S.
,
2017
, “
Study to Identify Computational Fluid Dynamics Models for Use in Determining HVAC Duct Fitting Loss Coefficients
,”
Sci. Technol. Built Environ.
,
23
(
1
), pp.
181
191
. 10.1080/23744731.2016.1204889
22.
Salehi
,
M.
,
Idem
,
S.
, and
Sleiti
,
A.
,
2017
, “
Experimental Determination and Computational Fluid Dynamics Predictions of Pressure Loss in Close-Coupled Elbows (RP-1682)
,”
Sci. Technol. Built Environ.
,
23
(
7
), pp.
1132
1141
. 10.1080/23744731.2016.1268904
23.
Sleiti
,
A.
,
Salehi
,
M.
, and
Idem
,
S.
,
2017
, “
Detailed Velocity Profiles in Close-Coupled Elbows—Measurements and Computational Fluid Dynamics Predictions (RP-1682)
,”
Sci. Technol. Built Environ.
,
23
(
8
), pp.
1212
1223
. 10.1080/23744731.2017.1285176
24.
Sleiti
,
A. K.
,
Zhai
,
J.
, and
Idem
,
S.
,
2013
, “
Computational Fluid Dynamics to Predict Duct Fitting Losses: Challenges and Opportunities
,”
HVAC R Res.
,
19
(
1
), pp.
2
9
. 10.1080/10789669.2012.716341
25.
Sorensen
,
H. H.
,
1987
, “
Displacement Ventilation
,”
Electr. Counc. Overseas Relat. Branch Transl. Serv.
,
1
, pp.
3
6
.
26.
Alajmi
,
A.
,
2017
, “
Under-Floor Air Distribution System (UFAD): Energy and Thermal Comfort Analysis
,” https://www.eugcc-cleanergy.net/sites/default/files/events/201710_Kuwait/02102017/2._02.10.2017_day_1_workshop_session_i_ali_alajmi_paaet.pdf,
1
, pp.
1
9
.
27.
Alsved
,
M.
,
Civilis
,
A.
,
Ekolind
,
P.
,
Tammelin
,
A.
,
Andersson
,
A. E.
,
Jakobsson
,
J.
,
Svensson
,
T.
,
Ramstorp
,
M.
,
Sadrizadeh
,
S.
,
Larsson
,
P.-A.
,
Bohgard
,
M.
,
Šantl-Temkiv
,
T.
, and
Löndahl
,
J.
,
2018
, “
Temperature-Controlled Airflow Ventilation in Operating Rooms Compared With Laminar Airflow and Turbulent Mixed Airflow
,”
J. Hosp. Infect.
,
98
(
2
), pp.
181
190
. 10.1016/j.jhin.2017.10.013
28.
Liu
,
Z.
,
Liu
,
H.
,
Yin
,
H.
,
Rong
,
R.
,
Cao
,
G.
, and
Deng
,
Q.
,
2020
, “
Prevention of Surgical Site Infection Under Different Ventilation Systems in Operating Room Environment
,”
Front. Environ. Sci. Eng.
,
15
(
36
), pp.
2021
. 10.1007/s11783-020-1327-9
29.
PickHvac Colling & Heating
,
2020
, “
UV Lights for HVAC Systems? Are They Worth the Money? (Updated on April 25th, 2020)
,”
UV Lights
,
1
. https://www.pickhvac.com/faq/hvac-uv-lights/Accessed August 23, 2020.
30.
Ghosh
,
N.
,
Howard
,
A.
,
Lee
,
H.
,
Bos
,
T.
,
Bennert
,
J.
, and
Saadeh
,
C.
,
2020
, “
A Novel Air Purification Technology : Assessment on the Reduction of Aeroallergen, Dander and Particulate Matter 2. 5 (PM 2. 5)
,”
Collections2020 Faculty Poster Session and Research Fair
,
5
, p.
79118
. https://hdl.handle.net/11310/299Accessed August 23, 2020.
31.
Ghosh
,
N.
,
Howard
,
A.
,
Saadeh
,
C.
,
Bennert
,
J.
, and
Rogers
,
W.
,
2020
, “
Use of Bi-Polar® Ionization Technology to Combat With the Increased PM 2.5 Count and Aeroallergen Indices
,”
J. Allergy Clin. Immunol.
,
2
. 10.1016/j.jaci.2019.12.736
32.
Nishida
,
R. T.
,
Johnson
,
T. J.
,
Hassim
,
J. S.
,
Graves
,
B. M.
,
Boies
,
A. M.
, and
Hochgreb
,
S.
,
2020
, “
A Simple Method for Measuring Fine-to-Ultrafine Aerosols Using Bipolar Charge Equilibrium
,”
ACS Sens.
,
5
(
2
), pp.
447
453
. 10.1021/acssensors.9b02143
33.
Isaifan
,
R. J.
,
2020
, “
The Dramatic Impact of Coronavirus Outbreak on Air Quality: Has it Saved as Much as It Has Killed so Far?
,”
Global J. Environ. Sci. Manage.
,
6
(
3
), pp.
275
288
. 10.22034/gjesm.2020.03.01
34.
Dai
,
H.
, and
Zhao
,
B.
,
2020
, “
Association of the Infection Probability of COVID-19 With Ventilation Rates in Confined Spaces
,”
Build. Simul.
,
13
, pp.
1321
1327
. 10.1007/s12273-020-0703-5
35.
Riley
,
E. C.
,
Murphy
,
G.
, and
Riley
,
R. L.
,
1978
, “
Airborne Spread of Measles in a Suburban Elementary School
,”
Am. J. Epidemiol.
,
107
(
5
), pp.
421
432
. 10.1093/oxfordjournals.aje.a112560
36.
Duan
,
X.
,
2013
,
Exposure Factors Handbook of Chinese Population
, 1, Vol.
1
,
China Environmental Press
,
Beijing
.
37.
Trepte
,
L.
, and
Haberda
,
F.
,
1989
,
Minimum Ventilation Rates
, 1, Vol.
1
,
IEA
. https://www.aivc.org/sites/default/files/members_area/medias/pdf/Technotes/TN26
38.
Ahmad Abdelhadi
,
R. S. A.
,
Salem
,
A.
,
Abbas
,
A. I.
, and
Qandil
,
M.
,
2021
, “
Study of Energy Saving Analysis for Different Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052101
. 10.1115/1.4048249
39.
Hamanah
,
W. M. A.
,
Kassas
,
M.
,
Mokheimer
,
E. M. A.
,
Ahmed
,
C. B.
, and
Said
,
S. A. M.
,
2019
, “
Comparison of Energy Consumption for Residential Thermal Models With Actual Measurements
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032002
. 10.1115/1.4041663
40.
Sleiti
,
A. K.
,
Al-Ammaria
,
W. A.
,
Al-Khawaja
,
M.
, and
Karbon
,
M.
,
2020
, “
A Combined Thermo-Mechanical Refrigeration System With Isobaric Expander-Compressor Unit Powered by Low Grade Heat—Design and Analysis
,”
Int. J. Refrig.
,
120
, pp.
39
49
. 10.1016/j.ijrefrig.2020.08.017
41.
Ji
,
W.
,
Chen
,
C.
, and
Zhao
,
B.
,
2020
,
Building Simulation
, pp.
1
13
. 10.1007/s12273-020-0694-2
42.
Pacitto
,
A.
,
Amato
,
F.
,
Moreno
,
T.
,
Pandolfi
,
M.
,
Fonseca
,
A.
,
Mazaheri
,
M.
,
Stabile
,
L.
,
Buonanno
,
G.
, and
Querol
,
X.
,
2020
, “
Effect of Ventilation Strategies and Air Purifiers on the Children’s Exposure to Airborne Particles and Gaseous Pollutants in School Gyms
,”
Sci. Total Environ.
,
712
, p.
135673
. 10.1016/j.scitotenv.2019.135673
43.
Park
,
B.
, and
Lee
,
S.
,
2020
, “
Investigation of the Energy Saving Efficiency of a Natural Ventilation Strategy in a Multistory School Building
,”
Energies
,
13
(
7
), pp.
1746
. 10.3390/en13071746
44.
Raji
,
B.
,
Tenpierik
,
M. J.
,
Bokel
,
R.
, and
van den Dobbelsteen
,
A.
,
2020
, “
Natural Summer Ventilation Strategies for Energy-Saving in High-Rise Buildings: A Case Study in the Netherlands
,”
Int. J. Vent.
,
19
(
1
), pp.
25
48
. 10.1080/14733315.2018.1524210
45.
Meng
,
X.
,
Wang
,
Y.
,
Xing
,
X.
, and
Xu
,
Y.
,
2020
, “
Experimental Study on the Performance of Hybrid Buoyancy-Driven Natural Ventilation With a Mechanical Exhaust System in an Industrial Building
,”
Energy Build.
,
208
, pp.
109674
. 10.1016/j.enbuild.2019.109674
46.
Abdullah
,
H. K.
, and
Alibaba
,
H. Z.
,
2020
, “
Open-Plan Office Design for Improved Natural Ventilation and Reduced Mixed Mode Supplementary Loads
,”
Indoor Built Environ.
,
2020
, pp.
1
23
. 10.1177/1420326X20953458
47.
Chen
,
Y.
,
Tong
,
Z.
,
Zheng
,
Y.
,
Samuelson
,
H.
, and
Norford
,
L.
,
2020
, “
Transfer Learning With Deep Neural Networks for Model Predictive Control of HVAC and Natural Ventilation in Smart Buildings
,”
J. Clean. Prod.
,
254
, pp.
119866
. 10.1016/j.jclepro.2019.119866
48.
Kyritsi
,
E.
, and
Michael
,
A.
,
2020
, “
An Assessment of the Impact of Natural Ventilation Strategies and Window Opening Patterns in Office Buildings in the Mediterranean Basin
,”
Build. Environ.
,
175
, pp.
106384
. 10.1016/j.buildenv.2019.106384
49.
Albuquerque
,
D. P.
,
Mateus
,
N.
,
Avantaggiato
,
M.
, and
Carrilho da Graça
,
G.
,
2020
, “
Full-Scale Measurement and Validated Simulation of Cooling Load Reduction Due to Nighttime Natural Ventilation of a Large Atrium
,”
Energy Build.
,
224
, pp.
110233
. 10.1016/j.enbuild.2020.110233
50.
Gupta
,
D.
, and
Khare
,
V. R.
,
2020
, “
Natural Ventilation Design: Predicted and Measured Performance of a Hostel Building in Composite Climate of India
,”
Energy Built Environ.
,
2
(
1
), pp.
82
93
. 10.1016/j.enbenv.2020.06.003
51.
Center for Disaster Philanthropy
,
2019
, “
2019-2020 Australian Bushfires
,”
Disasters
,
1
(
1
). https://disasterphilanthropy.org/disaster/2019-australian-wildfires/
52.
Kumar
,
R.
,
Sleiti
,
A.
, and
Kapat
,
J.
,
2006
, “
Unsteady Laminar Buoyant Flow Through Rectangular Vents in Large Enclosures
,”
J. Thermophys. Heat Transfer
,
20
(
2
), pp.
276
284
. 10.2514/1.11438
53.
Sleiti
,
A. K.
,
2008
, “
Effect of Vent Aspect Ratio on Unsteady Laminar Buoyant Flow Through Rectangular Vents in Large Enclosures
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4850
4861
. 10.1016/j.ijheatmasstransfer.2008.02.027
54.
Kampf
,
G.
,
Voss
,
A.
, and
Scheithauer
,
S.
,
2020
, “
Inactivation of Coronaviruses by Heat
,”
J. Hosp. Infect.
,
105
(
2
), pp.
348
349
. 10.1016/j.jhin.2020.03.025
55.
Chan
,
K. H.
,
Peiris
,
J. S. M.
,
Lam
,
S. Y.
,
Poon
,
L. L. M.
,
Yuen
,
K. Y.
, and
Seto
,
W. H.
,
2011
, “
The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus
,”
Adv. Virol.
,
2011
, p.
734690
. 10.1155/2011/734690
56.
Yuan
,
S.
,
Jiang
,
S. C.
, and
Li
,
Z. L.
,
2020
, “
Do Humidity and Temperature Impact the Spread of the Novel Coronavirus?
Front. Public Health
,
8
(
1
), pp.
240
. 10.3389/fpubh.2020.00240
57.
Bindu
,
M.
, and
Murugesan Arumugam
,
S. K. N.
,
2020
, “
Ambient Temperature and COVID-19 Incidence Rates: An Opportunity for Intervention? Short
,”
JIPMER
,
1
(
1
), pp.
1
.
58.
Lim
,
S.
, and
Blatchley
,
E. R.
,
2009
, “
UV Disinfection System for Cabin Air
,”
Adv. Space Res.
,
44
(
8
), pp.
942
948
. 10.1016/j.asr.2009.06.001
59.
Jordan
,
P.
,
Werth
,
H. M.
,
Shelly
,
M.
, and
Mark
,
H.
,
2001
, “
Effects of Relative Humidity on the Ultraviolet Induced Inactivation of Airborne Bacteria
,”
Aerosol Sci. Technol.
,
35
(
3
), pp.
728
740
. 10.1080/02786820152546770
60.
Naunovic
,
Z.
,
Lim
,
S.
, and
Blatchley
,
E. R.
,
2008
, “
Investigation of Microbial Inactivation Efficiency of a UV Disinfection System Employing an Excimer Lamp
,”
Water Res.
,
42
(
19
), pp.
4838
4846
. 10.1016/j.watres.2008.09.001
61.
Messina
,
G.
,
Burgassi
,
S.
,
Messina
,
D.
,
Montagnani
,
V.
, and
Cevenini
,
G.
,
2015
, “
A New UV-LED Device for Automatic Disinfection of Stethoscope Membranes
,”
Am. J. Infect. Control
,
43
(
10
), pp.
e61
e66
. 10.1016/j.ajic.2015.06.019
62.
Shen
,
R.
,
Amano
,
R. S.
,
Lewinski
,
G.
, and
Matt
,
A. K. K.
,
2019
, “
A New Vascular System Highly Efficient in the Storage and Transport of Healing Agent for Self-Healing Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051212
. 10.1115/1.4042916
63.
Kovach
,
C. R.
,
Taneli
,
Y.
,
Neiman
,
T.
,
Dyer
,
E. M.
,
Arzaga
,
A. J. A.
, and
Kelber
,
S. T.
,
2017
, “
Evaluation of an Ultraviolet Room Disinfection Protocol to Decrease Nursing Home Microbial Burden, Infection and Hospitalization Rates
,”
BMC Infect. Dis.
,
17
(
1
), pp.
1
8
. 10.1186/s12879-017-2275-2
64.
Xenex
,
2016
, “
How UV Disinfection Works
,”
UV
,
1
(
2016
), pp.
1
http://www.xenex.com/how-uvdisinfection-works, Accessed August 23, 2020.
65.
American Air & Water
,
2020
, “
UV Definitions
,”
UV
,
1
, pp.
1
http://www.americanairandwater.com/uv-definitions/index.htm, Accessed August 23, 2020.
66.
Dolphine Care
,
2020
, “
Ultraviolet Germical Irradiation (UVGI)
,”
UVGI
,
1
https://dolphincare.net/uvgi/, Accessed August 23, 2020.
67.
Pirnie
,
M.
,
Linden
,
K. G.
, and
Malley
,
J. P. J.
,
2006
, “
Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule
,”
Environ. Prot.
,
2
(
11
), pp.
1
436
.
68.
InspectAPedia
,
2020
, “
Air Flow Rate in HVAC Systems
,”
Air flow rate
,
1
, pp.
1
https://inspectapedia.com/aircond/Air_Flow_Rates.php, Accessed August 23, 2020.
69.
Koutchma
,
T.
,
2019
,
Ultraviolet Light in Food Technology: Principles and Applications.
,
Taylor & Francis
,
Germany
.
70.
Atci
,
F.
,
Cetin
,
Y. E.
,
Avci
,
M.
, and
Aydin
,
O.
,
2020
, “
Evaluation of In-Duct UV-C Lamp Array on Air Disinfection: A Numerical Analysis
,”
Sci. Technol. Built Environ.
,
1
, pp.
1
17
. 10.1080/23744731.2020.1776549
71.
Beggs
,
C. B.
, and
Avital
,
E. J.
,
2020
, “
Upper-Room Ultraviolet Air Disinfection Might Help to Reduce COVID-19 Transmission in Buildings
,”
medRxiv.
,
1
(
1
), pp.
1
. 10.1101/2020.06.12.20129254
72.
Morawska
,
L.
,
2020
, “
How Can Airborne Transmission of COVID-19 Indoors be Minimised?
Environ. Int.
,
142
, p.
105832
. 10.1016/j.envint.2020.105832
73.
Yang
,
H.
,
Hu
,
J.
,
Li
,
P.
, and
Zhang
,
C.
,
2020
, “
Ultraviolet Germicidal Irradiation for Filtering Facepiece Respirators Disinfection to Facilitate Reuse During COVID-19 Pandemic: A Review
,”
Photodiagn. Photodyn. Ther.
,
31
, pp.
101943
. 10.1016/j.pdpdt.2020.101943
74.
Zhao
,
B.
,
Liu
,
Y.
, and
Chen
,
C.
,
2020
, “
Air Purifiers: A Supplementary Measure to Remove Airborne SARS-CoV-2
,”
Build. Environ.
,
177
, pp.
106918
. 10.1016/j.buildenv.2020.106918
75.
Zhao
,
B.
,
Wang
,
D.
,
Su
,
Y.
, and
Wang
,
H.-L.
,
2020
, “
Gas-Particle Cyclonic Separation Dynamics : Modeling and Characterization
,”
Sep. Purif. Rev.
,
49
(
2
), pp.
112
142
. 10.1080/15422119.2018.1528278
76.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Structural Integrity Analysis of Gas-Liquid Cylindrical Cyclone (GLCC) Separator Inlet
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052905
. 10.1115/1.4038622
77.
Molina
,
R.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2008
, “
Wet Gas Separation in Gas-Liquid Cylindrical Cyclone Separator
,”
ASME J. Energy Resour. Technol.
,
130
(
4
), p.
042701
. 10.1115/1.3000101
78.
Shoham
,
O.
,
Kolla
,
S. S.
, and
Mohan
,
R. S.
,
2021
, “
Swirling Flow Regimes and Gas Carry-Under in Gas-Liquid Cylindrical Cyclone Separator in a Separated Outlet Configuration
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042304
. 10.1115/1.4048230
79.
Pan
,
M.
,
Lednicky
,
J. A.
, and
Wu
,
C. Y.
,
2019
, “
Collection, Particle Sizing and Detection of Airborne Viruses
,”
J. Appl. Microbiol.
,
127
(
6
), pp.
1596
1611
. 10.1111/jam.14278
80.
Kenny
,
L. C.
,
Thorpe
,
A.
, and
Stacey
,
P.
,
2017
, “
A Collection of Experimental Data for Aerosol Monitoring Cyclones
,”
Aerosol Sci. Technol.
,
51
(
10
), pp.
1190
1200
. 10.1080/02786826.2017.1341620
You do not currently have access to this content.