Abstract

In this article, by using exergoeconomic approach, an economic evaluation of reverse Brayton cycle-based refrigerator has been performed for 10 kW range cooling capacity at 65 K. One of the typical application domains of this refrigerator at the considered heat load is cooling of high-temperature superconductor for future power transmission lines that are in the developmental phase in different parts of the world. Multi-objective optimization and sensitivity analysis have been performed to investigate the sources of cost attached to the exergy destruction. Based on exergoeconomic evaluation parameters, recommendations have been provided for deciding the cost-effective design parameters for refrigerators. The significant finding of this analysis is that, for the basic reverse Brayton cryocooler, component performance, the turbine being the major one, needs to be improved to meet the economic criteria of 25 $/W as enumerated in the cryogenic road map for high-temperature superconductor cooling. The exergoeconomic design applied on the reverse Brayton refrigerator for high-temperature superconductor cables cooling can be adapted for other applications such as recondensation and liquefied natural gas cold energy utilization.

References

1.
Bi
,
Y. F.
,
2013
, “
Cooling and Cryocoolers for HTS Power Applications
,”
Appl. Supercond. Electromagn.
,
4
(
1
), pp.
97
108
.
2.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2018
, “
Thermoeconomic Analysis of Reverse Brayton Cycle Based Cryocooler
,”
Volume 6B: Energy.
,
Pittsburgh, PA
,
Nov. 9–15
.
3.
Demko
,
J. A.
,
Lue
,
J. W.
,
Gouge
,
M. J.
,
Stovall
,
J. P.
,
Martin
,
R.
,
Sinha
,
U.
, and
Hughey
,
R. L.
,
2000
, “
Cryogenic System for a High-Temperature Superconducting Power Transmission Cable
,”
Adv. Cryog. Eng.
,
45
(
B
), pp.
1411
1418
.
4.
Hirai
,
H.
,
Suzuki
,
Y.
,
Hirokawa
,
M.
,
Kobayashi
,
H.
,
Kamioka
,
Y.
,
Iwakuma
,
M.
, and
Shiohara
,
Y.
,
2009
, “
Development of a Turbine Cryocooler for High Temperature Superconductor Applications
,”
Physica C
,
469
(
15–20
), pp.
1857
1861
.
5.
Air Liquide
, “
Turbo-Brayton cryogenic systems | Air Liquide Advanced Technologies
,” https://advancedtech.airliquide.com/turbo-brayton-cryogenic-systems, Accessed May 12, 2020.
6.
Chang
,
H. M.
,
Chung
,
M. J.
,
Kim
,
M. J.
, and
Park
,
S. B.
,
2009
, “
Thermodynamic Design of Methane Liquefaction System Based on Reversed-Brayton Cycle
,”
Cryogenics
,
49
(
6
), pp.
226
234
.
7.
Deserranno
,
D.
,
Zagarola
,
M.
,
Li
,
X.
, and
Mustafi
,
S.
,
2014
, “
Optimization of a Brayton Cryocooler for ZBO Liquid Hydrogen Storage in Space
,”
Cryogenics
,
64
, pp.
172
181
.
8.
Zhang
,
Y.
,
Li
,
Q.
,
Wu
,
J.
,
Li
,
Q.
,
Lu
,
W.
,
Xiong
,
L.
,
Liu
,
L.
,
Xu
,
X.
,
Sun
,
L.
,
Sun
,
Y.
,
Xie
,
X.
,
Wang
,
B.
,
Qiu
,
Y.
, and
Zhang
,
P.
,
2015
, “
Performance Analysis of a Large-Scale Helium Brayton Cryo-Refrigerator With Static Gas Bearing Turboexpander
,”
Energy Convers. Manage.
,
90
, pp.
207
217
.
9.
Chang
,
H. M.
,
Ryu
,
K. N.
, and
Baik
,
J. H.
,
2018
, “
Thermodynamic Design of Hydrogen Liquefaction Systems With Helium or Neon Brayton Refrigerator
,”
Cryogenics
,
91
, pp.
68
76
.
10.
Breedlove
,
J. J.
,
Magari
,
P. J.
, and
Miller
,
G. W.
,
2012
, “
Cryocooler for Air Liquefaction Onboard Large Aircraft
,”
AIP Conf. Proc.
,
985
(
2008
), pp.
838
845
.
11.
Gouge
,
M. J.
,
Demko
,
J. A.
,
McConnell
,
B. W.
, and
Pfotenhauer
,
O. J. M.
,
2002
,
Cryogenics Assessment Report
,
ORNL
,
Oak Ridge, TN
.
12.
Gouge
,
M. J.
,
2004
, “
Cryogenic Cooling Technology for HTS Electric Machinery
,”
IEEE Power Engineering Society General Meeting
,
Denvor, CO
,
June 6–10
, pp.
1
3
.
13.
Shnaid
,
I.
,
1999
, “
Thermodynamic and Techno-Economic Analyses of a Combined Power Plant With a Simple Cycle Gas Turbine, the Bottoming Air Turbine Cycle and the Reverse Brayton Cycle
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations
,
Indianapolis, IN
,
June 7–10
.
14.
Tyagi
,
S. K.
,
Chen
,
G. M.
,
Wang
,
Q.
, and
Kaushik
,
S. C.
,
2006
, “
A New Thermoeconomic Approach and Parametric Study of an Irreversible Regenerative Brayton Refrigeration Cycle
,”
Int. J. Refrig.
,
29
(
7
), pp.
1167
1174
.
15.
Dhillon
,
A. K.
,
Bajpai
,
A.
, and
Ghosh
,
P.
,
2019
, “
The Effect of HTS Heat Rejection Conditions on Performance of Reverse Brayton Cryocooler
,”
Refrigeration Science and Technology
,
Prague, Czech Republic
,
Apr. 7–11
.
16.
Sadatsakkak
,
S. A.
,
Ahmadi
,
M. H.
, and
Ahmadi
,
M. A.
,
Apr. 2015
, “
Thermodynamic and Thermo-Economic Analysis and Optimization of an Irreversible Regenerative Closed Brayton Cycle
,”
Energy Convers. Manage.
,
94
, pp.
124
129
.
17.
Tsatsaronis
,
G.
,
1993
, “
Thermoeconomic Analysis and Optimization of Energy Systems
,”
Prog. Energy Combust. Sci.
,
19
(
3
), pp.
227
257
.
18.
Tsatsaronis
,
G.
,
Lin
,
L.
, and
Pisa
,
J.
,
1993
, “
Exergy Costing in Exergoeconomics
,”
ASME J. Energy Res. Technol.
,
115
(
1
), pp.
9
16
.
19.
Feng
,
H.
,
Chen
,
L.
, and
Sun
,
F.
,
2011
, “
Exergoeconomic Optimal Performance of an Irreversible Closed Brayton Cycle Combined Cooling, Heating and Power Plant
,”
Appl. Math. Model.
,
35
(
9
), pp.
4661
4673
.
20.
Naserian
,
M. M.
,
Farahat
,
S.
, and
Sarhaddi
,
F.
,
2016
, “
Exergoeconomic Multi Objective Optimization and Sensitivity Analysis of a Regenerative Brayton Cycle
,”
Energy Convers. Manage.
,
117
, pp.
95
105
.
21.
Luo
,
D.
, and
Huang
,
D.
,
Apr. 2020
, “
Thermodynamic and Exergoeconomic Investigation of Various SCO2 Brayton Cycles for Next Generation Nuclear Reactors
,”
Energy Convers. Manage.
,
209
, p.
112649
.
22.
Wang
,
M.
,
Khalilpour
,
R.
, and
Abbas
,
A.
,
2014
, “
Thermodynamic and Economic Optimization of LNG Mixed Refrigerant Processes
,”
Energy Convers. Manage.
,
88
, pp.
947
961
.
23.
Mehrpooya
,
M.
, and
Zonouz
,
M. J.
,
2017
, “
Analysis of an Integrated Cryogenic Air Separation Unit, Oxy-Combustion Carbon Dioxide Power Cycle and Liquefied Natural Gas Regasification Process by Exergoeconomic Method
,”
Energy Convers. Manage.
,
139
, pp.
245
259
.
24.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Res. Technol.
,
142
(
10
), p.
102108
.
25.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2017
, “
Study of Reverse Brayton Cryocooler With Helium-Neon Mixture for HTS Cable
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
278
(
1
), pp.
1
9
.
26.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2019
, “
Performance Characteristics Map Using Exergy Analysis of Reverse Brayton Cryocooler for HTS Applications: Selection, Optimization, Design and Operational Guidelines
,”
Cryogenics
,
106
, p.
103024
.
27.
Brown
,
R. N.
,
2005
,
Compressor Selection and Sizing
, 3rd ed.,
Gulf Professional Publishing Co.
,
USA
.
28.
Alex Sam
,
A.
, and
Ghosh
,
P.
,
2016
, “
Helium Turboexpander for Cryogenic Refrigeration and Liquefaction Cycles: Transient Analysis of Rotor-Stator Interaction
,”
Proceeding of ASME Turbo Expo: Turbomachinery Technical Conference Exposition
,
Seoul, South Korea
,
June 13–17
.
29.
Chang
,
H. M.
,
Gwak
,
K. H.
,
Jung
,
S.
,
Yang
,
H. S.
, and
Hwang
,
S. D.
,
2015
, “
Plate-Fin Heat-Exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable
,”
Phys. Procedia
,
67
, pp.
221
226
.
30.
Chakravarty
,
A.
,
Menon
,
R. S.
,
Goyal
,
M.
,
Ahmed
,
N.
,
Jadhav
,
M.
,
Rane
,
T.
,
Nair
,
S. R.
,
Kumar
,
J.
,
Kumar
,
N.
,
Bharti
,
S. K.
,
Jain
,
A.
, and
Joemon
,
V.
,
2017
, “
Development and Performance Evaluation of High Speed Cryogenic Turboexpanders at BARC, India
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
278
(
1
), p.
012028
.
31.
Thomas
,
R. J.
,
2012
,
Exergy Approach in Designing Large-Scale Helium Liquefiers
,
Indian Institute of Technology Kharagpur
,
Kharagpur
.
32.
Dutta
,
R.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
,
2011
, “
Customization and Validation of a Commercial Process Simulator for Dynamic Simulation of Helium Liquefier
,”
Energy
,
36
(
5
), pp.
3204
3214
.
33.
Chang
,
H.-M.
,
Park
,
C. W.
,
Yang
,
H. S.
,
Sohn
,
S. H.
,
Lim
,
J. H.
,
Oh
,
S. R.
, and
Hwang
,
S. D.
,
2012
, “
Thermodynamic Design of 10 kW Brayton Cryocooler for HTS Cable
,”
AIP Conf. Proc.
,
1434
(
57
), pp.
1664
1671
.
34.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley & Sons, Inc.
,
New York
.
35.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Plant Analysis
, 1st ed.,
Anchor Brendon Ltd
,
Tiptree, Essex
.
36.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8–9
), pp.
1257
1289
.
37.
Dhillon
,
A. K.
,
Dutta
,
R.
, and
Ghosh
,
P.
,
2017
, “
Exergetic Analysis of Reverse Brayton Cryocooler for Different Cooling Loads at 65 K for HTS Cables
,”
14th Cryogenics 2017 IIR International Conference
,
Dresden, Germany
,
May 15–19
.
38.
Barron
,
R.
, and
Nellis
,
G.
,
2016
,
Cryogenic Heat Transfer
, 2nd ed.,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
.
You do not currently have access to this content.