Abstract

Coal and biomass are regularly used in the preparation of activated coke. In this paper, coal and biomass (poplar bark) were co-pyrolyzed, and activated coke was prepared by physical “one-step activation,” followed by ammonization and additional activation by potassium carbonate (K2CO3). The activation temperature was set at 800 °C, the time was 60 min, and the activation atmosphere contained 10% steam and 20% CO2 by volume in nitrogen. The physical and chemical properties of activated coke prepared by “one-step activation method” and “two-step activation method” were compared. The mole fraction of ammonia was 5%, 10%, 15%, 20%, respectively, and the concentration of K2CO3 solution was 3%, 6%, 9%, 12%, respectively. It is found that the addition of ammonia can improve the physical and chemical properties and adsorption capacity of activated coke, but the increase of ammonia mole fraction has little effect on the activation reaction. The physical and chemical structure of activated coke impregnated with 3% K2CO3 solution was found to be well developed. The surface of the produced activated coke prepared by the above activation methods has abundant microporous structure and organic functional groups; hence, the final product is suitable to be used as an adsorbent in practical applications.

References

1.
Li
,
W. G.
,
Gong
,
X. J.
,
Wang
,
K.
,
Zhang
,
X. R.
, and
Fan
,
W. B.
,
2014
, “
Adsorption Characteristics of Arsenic From Micro-Polluted Water by an Innovative Coal-Based Mesoporous Activated Carbon
,”
Bioresour. Technol.
,
165
, pp.
166
173
.
2.
Rashidi
,
N. A.
, and
Yusup
,
S.
,
2021
, “
Co-Valorization of Delayed Petroleum Coke—Palm Kernel Shell for Activated Carbon Production
,”
J. Hazard. Mater.
,
403
, p.
123876
.
3.
Wang
,
L.
,
Lu
,
L.
,
Li
,
M.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2021
, “
Effects of Carbonization on the Co-Activation of Sludge and Biomass to Produce Activated Coke
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102305
.
4.
Hagemann
,
N.
,
Schmidt
,
H. P.
,
Kägi
,
R.
,
Böhler
,
M.
,
Sigmund
,
G.
,
Maccagnan
,
A.
, and
Bucheli
,
T. D.
,
2020
, “
Wood-Based Activated Biochar to Eliminate Organic Micropollutants From Biologically Treated Wastewater
,”
Sci. Total Environ.
,
730
, p.
138417
.
5.
Aboua
,
K. N.
,
Yobouet
,
Y. A.
,
Yao
,
K. B.
,
Gone
,
D. L.
, and
Trokourey
,
A.
,
2015
, “
Investigation of dye Adsorption Onto Activated Carbon From the Shells of Macoré Fruit
,”
J. Environ. Manage.
,
156
, pp.
10
14
.
6.
Zhao
,
Y.
,
Fang
,
F.
,
Xiao
,
H. M.
,
Feng
,
Q. P.
,
Xiong
,
L. Y.
, and
Fu
,
S. Y.
,
2015
, “
Preparation of Pore-Size Controllable Activated Carbon Fibers From Bamboo Fibers with Superior Performance for Xenon Storage
,”
Chem. Eng. J.
,
270
, pp.
528
534
.
7.
Hsu
,
L. Y.
, and
Teng
,
H.
,
2000
, “
Influence of Different Chemical Reagents on the Preparation of Activated Carbons From Bituminous Coal
,”
Fuel Process. Technol.
,
64
(
1–3
), pp.
155
166
.
8.
Li
,
J.
,
Yang
,
W.
,
Blasiak
,
W.
, and
Ponzio
,
A.
,
2012
, “
Volumetric Combustion of Biomass for CO2 and NOx Reduction in Coal-Fired Boilers
,”
Fuel
,
102
, pp.
624
633
.
9.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction, and air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082202
.
10.
Caliskan Sarikaya
,
A.
,
Haykiri Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Synergistic Interactions During Cocombustion of Lignite, Biomass, and Their Chars
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122203
.
11.
Li
,
S.
,
Chen
,
X.
,
Liu
,
A.
,
Wang
,
L.
, and
Yu
,
G.
,
2015
, “
Co-Pyrolysis Characteristic of Biomass and Bituminous Coal
,”
Bioresour. Technol.
,
179
, pp.
414
420
.
12.
Xie
,
G.
,
Gupta
,
A. K.
,
Zhang
,
Y.
,
Manca
,
O.
, and
Zhang
,
H.
,
2018
, “
Special Issue on Recent Advances in Fundamentals and Applications of Biomass Energy
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
040301
.
13.
Oladejo
,
J. M.
,
Adegbite
,
S.
,
Pang
,
C. H.
,
Liu
,
H.
,
Parvez
,
A. M.
, and
Wu
,
T.
,
2017
, “
A Novel Index for the Study of Synergistic Effects During the Co-Processing of Coal and Biomass
,”
Appl. Energy
,
188
, pp.
215
225
.
14.
Li
,
Y.
,
Li
,
L.
,
Liu
,
Y.
,
Ren
,
X.
,
Chen
,
J.
, and
Levendis
,
Y. A.
,
2021
, “
Sulfur and Nitrogen Release From Co-Pyrolysis of Coal and Biomass Under Oxidative and Non-Oxidative Conditions
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061304
.
15.
Khan
,
A.
,
Szulejko
,
J. E.
,
Samaddar
,
P.
,
Kim
,
K. H.
,
Liu
,
B.
,
Maitlo
,
H. A.
, and
Ok
,
Y. S.
,
2019
, “
The Potential of Biochar as Sorptive Media for Removal of Hazardous Benzene in Air
,”
Chem. Eng. J.
,
361
, pp.
1576
1585
.
16.
Zhao
,
X.
,
Zeng
,
X.
,
Qin
,
Y.
,
Li
,
X.
,
Zhu
,
T.
, and
Tang
,
X.
,
2018
, “
An Experimental and Theoretical Study of the Adsorption Removal of Toluene and Chlorobenzene on Coconut Shell Derived Carbon
,”
Chemosphere
,
206
, pp.
285
292
.
17.
Tan
,
I. A. W.
,
Ahmad
,
A. L.
, and
Hameed
,
D. B.
,
2008
, “
Preparation of Activated Carbon From Coconut Husk: Optimization Study on Removal of 2, 4, 6-Trichlorophenol Using Response Surface Methodology
,”
J. Hazard. Mater.
,
153
(
1–2
), pp.
709
717
.
18.
Wang
,
G.
,
Chen
,
S.
,
Quan
,
X.
,
Yu
,
H.
, and
Zhang
,
Y.
,
2017
, “
Enhanced Activation of Peroxymonosulfate by Nitrogen Doped Porous Carbon for Effective Removal of Organic Pollutants
,”
Carbon
,
115
, pp.
730
739
.
19.
Björklund
,
K.
, and
Li
,
L. Y.
,
2017
, “
Adsorption of Organic Stormwater Pollutants Onto Activated Carbon From Sewage Sludge
,”
J. Environ. Manage.
,
197
, pp.
490
497
.
20.
Nowrouzi
,
M.
,
Younesi
,
H.
, and
Bahramifar
,
N.
,
2017
, “
High Efficient Carbon Dioxide Capture Onto As-Synthesized Activated Carbon by Chemical Activation of Persian Ironwood Biomass and the Economic Pre-Feasibility Study for Scale-up
,”
J. Clean. Prod.
,
168
, pp.
499
509
.
21.
Wu
,
H. Y.
,
Chen
,
S. S.
,
Liao
,
W.
,
Wang
,
W.
,
Jang
,
M. F.
,
Chen
,
W. H.
, and
Wu
,
K. C. W.
,
2020
, “
Assessment of Agricultural Waste-Derived Activated Carbon in Multiple Applications
,”
Environ. Res. Lett.
,
191
, p.
110176
.
22.
Kisiela
,
A. M.
,
Czajka
,
K. M.
,
Moroń
,
W.
,
Rybak
,
W.
, and
Andryjowicz
,
C.
,
2016
, “
Unburned Carbon From Lignite Fly Ash as an Adsorbent for SO2 Removal
,”
Energy
,
116
, pp.
1454
1463
.
23.
Liu
,
Q.
,
Li
,
C.
, and
Li
,
Y.
,
2003
, “
SO2 Removal From Flue gas by Activated Semi-Cokes: 1. The Preparation of Catalysts and Determination of Operating Conditions
,”
Carbon
,
41
(
12
), pp.
2217
2223
.
24.
Zeng
,
L.
,
Li
,
X.
,
Fan
,
S.
,
Mu
,
J.
,
Qin
,
M.
,
Wang
,
X.
, and
Liu
,
S.
,
2019
, “
Seaweed-Derived Nitrogen-Rich Porous Biomass Carbon as Bifunctional Materials for Effective Electrocatalytic Oxygen Reduction and High-Performance Gaseous Toluene Absorbent
,”
Acs. Sustain. Chem. Eng.
,
7
(
5
), pp.
5057
5064
.
25.
Rahmani-Sani
,
A.
,
Singh
,
P.
,
Raizada
,
P.
,
Lima
,
E. C.
,
Anastopoulos
,
I.
,
Giannakoudakis
,
D. A.
, and
Hosseini-Bandegharaei
,
A.
,
2020
, “
Use of Chicken Feather and Eggshell to Synthesize a Novel Magnetized Activated Carbon for Sorption of Heavy Metal Ions
,”
Bioresour. Technol.
,
297
, p.
122452
.
26.
Igalavithana
,
A. D.
,
Yang
,
X.
,
Zahra
,
H. R.
,
Tack
,
F. M.
,
Tsang
,
D. C.
,
Kwon
,
E. E.
, and
Ok
,
Y. S.
,
2018
, “
Metal (Loid) Immobilization in Soils with Biochars Pyrolyzed in N2 and CO2 Environments
,”
Sci. Total. Environ.
,
630
, pp.
1103
1114
.
27.
Sajjadi
,
S. A.
,
Meknati
,
A.
,
Lima
,
E. C.
,
Dotto
,
G. L.
,
Mendoza-Castillo
,
D. I.
,
Anastopoulos
,
I.
, and
Hosseini-Bandegharaei
,
A.
,
2019
, “
A Novel Route for Preparation of Chemically Activated Carbon From Pistachio Wood for Highly Efficient Pb (II) Sorption
,”
J. Environ. Manage.
,
236
, pp.
34
44
.
28.
Rubio
,
B.
, and
Izquierdo
,
M. T.
,
1997
, “
Influence of low-Rank Coal Char Properties on Their SO2 Removal Capacity From Flue Gases: I. Non-Activated Chars
,”
Carbon
,
35
(
7
), pp.
1005
1011
.
29.
Sajjadi
,
S. A.
,
Mohammadzadeh
,
A.
,
Tran
,
H. N.
,
Anastopoulos
,
I.
,
Dotto
,
G. L.
,
Lopičić
,
Z. R.
, and
Hosseini-Bandegharaei
,
A.
,
2018
, “
Efficient Mercury Removal From Wastewater by Pistachio Wood Wastes-Derived Activated Carbon Prepared by Chemical Activation Using a Novel Activating Agent
,”
J. Environ. Manage.
,
223
, pp.
1001
1009
.
30.
Sun
,
F.
,
Gao
,
J.
,
Liu
,
X.
,
Tang
,
X.
, and
Wu
,
S.
,
2015
, “
A Systematic Investigation of SO2 Removal Dynamics by Coal-Based Activated Cokes: The Synergic Enhancement Effect of Hierarchical Pore Configuration and gas Components
,”
Appl. Surf. Sci.
,
357
, pp.
1895
1901
.
31.
Chan
,
L. S.
,
Cheung
,
W. H.
,
Allen
,
S. J.
, and
McKay
,
G.
,
2009
, “
Separation of Acid-Dyes Mixture by Bamboo Derived Active Carbon
,”
Sep. Purif. Technol.
,
67
(
2
), pp.
166
172
.
32.
Xiong
,
X.
,
Iris
,
K. M.
,
Cao
,
L.
,
Tsang
,
D. C.
,
Zhang
,
S.
, and
Ok
,
Y. S.
,
2017
, “
A Review of Biochar-Based Catalysts for Chemical Synthesis, Biofuel Production, and Pollution Control
,”
Bioresour. Technol.
,
246
, pp.
254
270
.
33.
Tseng
,
R. L.
,
Tseng
,
S. K.
, and
Wu
,
F. C.
,
2006
, “
Preparation of High Surface Area Carbons From Corncob With KOH Etching Plus CO2 Gasification for the Adsorption of Dyes and Phenols From Water
,”
Colloids Surf., A
,
279
(
1–3
), pp.
69
78
.
34.
Fu
,
J.
,
Zhang
,
J.
,
Jin
,
C.
,
Wang
,
Z.
,
Wang
,
T.
,
Cheng
,
X.
, and
Ma
,
C.
,
2020
, “
Effects of Temperature, Oxygen and Steam on Pore Structure Characteristics of Coconut Husk Activated Carbon Powders Prepared by One-Step Rapid Pyrolysis Activation Process
,”
Bioresour. Technol.
,
310
, p.
123413
.
35.
Zubrik
,
A.
,
Matik
,
M.
,
Hredzák
,
S.
,
Lovás
,
M.
,
Danková
,
Z.
,
Kováčová
,
M.
, and
Briančin
,
J.
,
2017
, “
Preparation of Chemically Activated Carbon From Waste Biomass by Single-Stage and Two-Stage Pyrolysis
,”
J. Clean. Prod.
,
143
, pp.
643
653
.
36.
Ahmad
,
M.
,
Rajapaksha
,
A. U.
,
Lim
,
J. E.
,
Zhang
,
M.
,
Bolan
,
N.
,
Mohan
,
D.
, and
Ok
,
Y. S.
,
2014
, “
Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review
,”
Chemosphere
,
99
, pp.
19
33
.
37.
Yang
,
K.
,
Peng
,
J.
,
Xia
,
H.
,
Zhang
,
L.
,
Srinivasakannan
,
C.
, and
Guo
,
S.
,
2010
, “
Textural Characteristics of Activated Carbon by Single Step CO2 Activation From Coconut Shells
,”
J. Taiwan. Inst. Chem. E.
,
41
(
3
), pp.
367
372
.
38.
Şahin
,
Ö
, and
Saka
,
C.
,
2013
, “
Preparation and Characterization of Activated Carbon From Acorn Shell by Physical Activation with H2O–CO2 in two-Step Pretreatment
,”
Bioresour. Technol.
,
136
, pp.
163
168
.
39.
González
,
M. T.
,
Molina-Sabio
,
M.
, and
Rodriguez-Reinoso
,
F.
,
1994
, “
Steam Activation of Olive Stone Chars, Development of Porosity
,”
Carbon
,
32
(
8
), pp.
1407
1413
.
40.
Dolas
,
H.
,
Sahin
,
O.
,
Saka
,
C.
, and
Demir
,
H.
,
2011
, “
A new Method on Producing High Surface Area Activated Carbon: the Effect of Salt on the Surface Area and the Pore Size Distribution of Activated Carbon Prepared From Pistachio Shell
,”
Chem. Eng. J.
,
166
(
1
), pp.
191
197
.
41.
Ahmadpour
,
A.
, and
Do
,
D. D.
,
1996
, “
The Preparation of Active Carbons From Coal by Chemical and Physical Activation
,”
Carbon
,
34
(
4
), pp.
471
479
.
42.
Laine
,
J.
, and
Calafat
,
A.
,
1991
, “
Factors Affecting the Preparation of Activated Carbons From Coconut Shell Catalized by Potassium
,”
Carbon
,
29
(
7
), pp.
949
953
.
43.
Kalderis
,
D.
,
Bethanis
,
S.
,
Paraskeva
,
P.
, and
Diamadopoulos
,
E.
,
2008
, “
Production of Activated Carbon From Bagasse and Rice Husk by a Single-Stage Chemical Activation Method at low Retention Times
,”
Bioresour. Technol.
,
99
(
15
), pp.
6809
6816
.
44.
Pietrzak
,
R.
,
Jurewicz
,
K.
,
Nowicki
,
P.
,
Babeł
,
K.
, and
Wachowska
,
H.
,
2007
, “
Microporous Activated Carbons From Ammoxidised Anthracite and Their Capacitance Behaviours
,”
Fuel
,
86
(
7–8
), pp.
1086
1092
.
45.
Bandosz
,
T. J.
, and
Ania
,
C. O.
,
2006
, “Surface Chemistry of Activated Carbons and its Characterization,”
Interface Science and Technology
,
7
,
Elsevier
,
New York
, pp.
159
229
.
46.
Fuente
,
A. M.
,
Pulgar
,
G.
,
González
,
F.
,
Pesquera
,
C.
, and
Blanco
,
C.
,
2001
, “
Activated Carbon Supported Pt Catalysts: Effect of Support Texture and Metal Precursor on Activity of Acetone Hydrogenation
,”
Appl. Catal. A-Gen.
,
208
(
1–2
), pp.
35
46
.
47.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
48.
Nowicki
,
P.
,
Kazmierczak
,
J.
,
Sawicka
,
K.
, and
Pietrzak
,
R.
,
2015
, “
Nitrogen-Enriched Activated Carbons Prepared by the Activation of Coniferous Tree Sawdust and Their Application in the Removal of Nitrogen Dioxide
,”
Int. J. Environ. Sci. Te.
,
12
(
7
), pp.
2233
2244
.
49.
Maroto-Valer
,
M. M.
,
Tang
,
Z.
, and
Zhang
,
Y.
,
2005
, “
CO2 Capture by Activated and Impregnated Anthracites
,”
Fuel Process. Technol.
,
86
(
14–15
), pp.
1487
1502
.
50.
Tay
,
T.
,
Ucar
,
S.
, and
Karagöz
,
S.
,
2009
, “
Preparation and Characterization of Activated Carbon From Waste Biomass
,”
J. Hazard. Mater.
,
165
(
1–3
), pp.
481
485
.
51.
Li
,
Y.
,
Lu
,
L.
,
Lyu
,
S.
,
Xu
,
H.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2021
, “
Activated Coke Preparation by Physical Activation of Coal and Biomass Co-Carbonized Chars
,”
J. Anal. Appl. Pyrol.
,
156
, p.
105137
.
52.
Pallarés
,
J.
,
González-Cencerrado
,
A.
, and
Arauzo
,
I.
,
2018
, “
Production and Characterization of Activated Carbon From Barley Straw by Physical Activation with Carbon Dioxide and Steam
,”
Biomass Bioenergy
,
115
, pp.
64
73
.
53.
Tao
,
J.
,
Huo
,
P.
,
Fu
,
Z.
,
Zhang
,
J.
,
Yang
,
Z.
, and
Zhang
,
D.
,
2019
, “
Characterization and Phenol Adsorption Performance of Activated Carbon Prepared From tea Residue by NaOH Activation
,”
Environ. Technol.
,
40
(
2
), pp.
171
181
.
54.
Prahas
,
D.
,
Kartika
,
Y.
,
Indraswati
,
N.
, and
Ismadji
,
S. J. C. E. J.
,
2008
, “
Activated Carbon From Jackfruit Peel Waste by H3PO4 Chemical Activation: Pore Structure and Surface Chemistry Characterization
,”
Chem. Eng. J.
,
140
(
1–3
), pp.
32
42
.
55.
Sun
,
K.
, and
chun Jiang
,
J.
,
2010
, “
Preparation and Characterization of Activated Carbon From Rubber-Seed Shell by Physical Activation with Steam
,”
Biomass Bioenergy
,
34
(
4
), pp.
539
544
.
56.
Wang
,
T.
,
Camps-Arbestain
,
M.
, and
Hedley
,
M.
,
2013
, “
Predicting C Aromaticity of Biochars Based on Their Elemental Composition
,”
Org. Geochem.
,
62
, pp.
1
6
.
57.
Faria
,
P. C.
,
Orfao
,
J. J.
, and
Pereira
,
M. F. R.
,
2005
, “
Mineralisation of Coloured Aqueous Solutions by Ozonation in the Presence of Activated Carbon
,”
Water Res.
,
39
(
8
), pp.
1461
1470
.
58.
Di Biase
,
E.
, and
Sarkisov
,
L.
,
2013
, “
Systematic Development of Predictive Molecular Models of High Surface Area Activated Carbons for Adsorption Applications
,”
Carbon
,
64
, pp.
262
280
.
59.
Yuan
,
M.
,
Kim
,
Y.
, and
Jia
,
C. Q.
,
2012
, “
Feasibility of Recycling KOH in Chemical Activation of oil-Sands Petroleum Coke
,”
Can. J. Chem. Eng
,
90
(
6
), pp.
1472
1478
.
60.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Effects of Dilute Phosphoric Acid Treatment on Structure and Burning Characteristics of Lignocellulosic Biomass
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082203
.
You do not currently have access to this content.