Abstract

Methane leakage due to compromised wellbore cement integrity may result in operational complications and environmental contaminations in oil and gas wells. In this work, the problem of fluid-driven fracture propagation at the cement interfaces is revisited by a thorough and comprehensive consideration of the non-uniform cement bonding to the formation along the wellbore. While previous works were mainly focused on discharge without attention to mechanical failure or mechanical failure without ties to seepage rate; here, we couple these two analyses to provide a practical aspect of this approach. As revealed by cement evaluation logs, the quality of the cement behind the casing varies and may include flaws in the form of channels or pockets of mud residuals. A novel methodology, initiated with laboratory-scale cement bonding properties using the push-out test, is introduced to estimate the cohesive properties of the cement interface, considering mud removal and mud residuals in the rock. Then, the measured cohesive properties are applied to a field-scale numerical model with an embedded cohesive layer between cement and formation to evaluate the susceptibility of the wellbore to develop cement debonding. The excessive fluid pressure at the casing shoe is assumed to be the source for the fracture initiation. The proposed numerical model has been tested against actual sustained casing pressure (SCP) field tests for validation purposes. This model may estimate the geometry of leakage pathways and predict leakage flowrate within acceptable ranges. The effect of several key factors in the development of SCP due to the cement debonding is investigated. The results show that the early stage of SCP buildup is controlled by the cohesive properties of the cement interfaces (i.e., cement properties), but the cohesive properties have minor effects on the stabilized pressure. The method proposed herein presents a method to evaluate the cement bond quantitatively to be further integrated into cement design.

References

1.
Böttner
,
C.
,
Haeckel
,
M.
,
Schmidt
,
M.
,
Berndt
,
C.
,
Vielstädte
,
L.
,
Kutsch
,
J. A.
,
Karstens
,
J.
, and
Weiß
,
T.
,
2020
, “
Greenhouse Gas Emissions From Marine Decommissioned Hydrocarbon Wells: Leakage Detection, Monitoring and Mitigation Strategies
,”
Int. J. Greenhouse Gas Control
,
100
(
103119
).
2.
Saunois
,
M.
,
Bousquet
,
P.
,
Poulter
,
B.
,
Peregon
,
A.
,
Ciais
,
P.
,
Canadell
,
J. G.
,
Dlugokencky
,
E. J.
,
Etiope
,
G.
,
Bastviken
,
D.
,
Houweling
,
S.
,
Janssens-Maenhout
,
G.
,
Tubiello
,
F. N.
,
Castaldi
,
S.
,
Jackson
,
R. B.
,
Alexe
,
M.
,
Arora
,
V. K.
,
Beerling
,
D. J.
,
Bergamaschi
,
P.
,
Blake
,
D. R.
,
Brailsford
,
G.
,
Brovkin
,
V.
,
Bruhwiler
,
L.
,
Crevoisier
,
C.
,
Crill
,
P.
,
Covey
,
K.
,
Curry
,
C.
,
Frankenberg
,
C.
,
Gedney
,
N.
,
Höglund-Isaksson
,
L.
,
Ishizawa
,
M.
,
Ito
,
A.
,
Joos
,
F.
,
Kim
,
H.-S.
,
Kleinen
,
T.
,
Krummel
,
P.
,
Lamarque
,
J.-F.
,
Langenfelds
,
R.
,
Locatelli
,
R.
,
Machida
,
T.
,
Maksyutov
,
S.
,
McDonald
,
K. C.
,
Marshall
,
J.
,
Melton
,
J. R.
,
Morino
,
I.
,
Naik
,
V.
,
O’Doherty
,
S.
,
Parmentier
,
F.-J. W.
,
Patra
,
P. K.
,
Peng
,
C.
,
Peng
,
S.
,
Peters
,
G. P.
,
Pison
,
I.
,
Prigent
,
C.
,
Prinn
,
R.
,
Ramonet
,
M.
,
Riley
,
W. J.
,
Saito
,
M.
,
Santini
,
M.
,
Schroeder
,
R.
,
Simpson
,
I. J.
,
Spahni
,
R.
,
Steele
,
P.
,
Takizawa
,
A.
,
Thornton
,
B. F.
,
Tian
,
H.
,
Tohjima
,
Y.
,
Viovy
,
N.
,
Voulgarakis
,
A.
,
van Weele
,
M.
,
van der Werf
,
G. R.
,
Weiss
,
R.
,
Wiedinmyer
,
C.
,
Wilton
,
D. J.
,
Wiltshire
,
A.
,
Worthy
,
D.
,
Wunch
,
D.
,
Xu
,
X.
,
Yoshida
,
Y.
,
Zhang
,
B.
,
Zhang
,
Z.
, and
Zhu
,
Q.
,
2016
, “
The Global Methane Budget 2000–2012
,”
Earth Syst. Sci. Data
,
8
(
2
), pp.
697
751
.
3.
Mwang’ande
,
A. W.
,
Liao
,
H.
, and
Zeng
,
L.
,
2019
, “
Mitigation of Annulus Pressure Buildup in Offshore Gas Wells by Determination of Top of Cement
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102901
.
4.
Bourgoyne
,
A.
,
Scott
,
S.
, and
Regg
,
J.
,
1999
, “
Sustained Casing Pressure in Offshore Producing Wells
,”
Offshore Technology Conference
,
Houston, TX
, p.
62
.
5.
Zhou
,
D.
, and
Wojtanowicz
,
A. K.
,
2011
, “
Annular Pressure Reduction During Primary Cementing
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031003
.
6.
Dahi Taleghani
,
A.
, and
Wang
,
W.
,
2016
, “
Emergence of Delamination Fractures Around the Casing and Its Stability
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012904
.
7.
Ahmed
,
S.
, and
Salehi
,
S.
,
2021
, “
Failure Mechanisms of the Wellbore Mechanical Barrier Systems: Implications for Well Integrity
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073007
.
8.
Xi
,
Y.
,
Li
,
J.
,
Tao
,
Q.
,
Guo
,
B.
, and
Liu
,
G.
,
2020
, “
Experimental and Numerical Investigations of Accumulated Plastic Deformation in Cement Sheath During Multistage Fracturing in Shale Gas Wells
,”
J. Pet. Sci. Eng.
,
187
(
106790
).
9.
Ingraffea
,
A. R.
,
Wawrzynek
,
P. A.
,
Santoro
,
R.
, and
Wells
,
M.
,
2020
, “
Reported Methane Emissions From Active Oil and Gas Wells in Pennsylvania, 2014–2018
,”
Environ. Sci. Technol.
,
54
(
9
), pp.
5783
5789
.
10.
Hammond
,
P. A.
,
2016
, “
The Relationship Between Methane Migration and Shale-Gas Well Operations Near Dimock, Pennsylvania, USA
,”
Hydrogeol. J.
,
24
(
2
), pp.
503
519
.
11.
Santos
,
L.
,
Alghamdi
,
A.
, and
Taleghani
,
A. D.
,
2019
, “
Experimental Evaluation of the Impact of Oil-Based Mud Residuals on Cement-Formation Bonding Strength
,”
Proceedings of AADE National Technical Conference and Exhibition
,
Denver, CO
.
12.
Bai
,
x.
,
Xu
,
Y.
,
Zhang
,
X.
,
Yong
,
X.
, and
Ning
,
T.
,
2021
, “
Enhancing the Solidification Between Mud Cake and Wall Rock for Cementing Applications: Experimental Investigation and Mechanisms
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073003
.
13.
Yu
,
H.
,
Dahi
,
A.
, and
Lian
,
Z.
,
2019
, “
Impact of the Dogleg Geometry on Displacement Efficiency During Cementing : An Integrated Modelling Approach
,”
J. Pet. Sci. Eng.
,
173
, pp.
588
600
.
14.
Bourgoyne
,
A. T.
,
Millhelm
,
K. K.
,
Chenevert
,
M. E.
, and
Young
,
F. S.
,
2014
,
Applied Drilling Engineering
,
Society of Petroleum Engineers, Inc
.
15.
Nelson
,
E. B.
, and
Guillot
,
D.
,
2006
,
Well Cementing
,
Schlumberger
.
16.
Frigaard
,
I. A.
,
Allouche
,
M.
, and
Gabard-Cuoq
,
C.
,
2001
, “
Setting Rheological Targets for Chemical Solutions in Mud Removal and Cement Slurry Design
,”
SPE International Symposium on Oilfield Chemistry
,
Houston, TX
,
February
, pp.
1
14
.
17.
Boyd
,
D.
,
Al-kubti
,
S.
,
Khedr
,
O. H.
,
Khan
,
N.
,
Al-nayadi
,
K.
,
Degouy
,
D.
,
Elkadi
,
A.
, and
Al Kindi
,
Z.
,
2006
, “
Reliability of Cement Bond Log Interpretations Compared to Physical Communication Tests Between Formations
,”
Abu Dhabi International Petroleum Exhibition and Conference
,
UAE
,
November
, p.
11
.
18.
Pallapothu
,
S. K.
,
Bogaerts
,
M.
,
De Bruijn
,
G. G.
,
Peyle
,
S.
, and
Rashid
,
F.
,
2014
, “
A Statistical Evaluation of Cement Placement Techniques by Use of Cement Bond Index
,”
SPE Annual Technical Conference and Exhibition
,
Amsterdam, The Netherlands
.
19.
Hillerborg
,
A.
,
Modéer
,
M.
, and
Petersson
,
P.-E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.
20.
Stang
,
H.
,
Olesen
,
J. F.
,
Poulsen
,
P. N.
, and
Dick-Nielsen
,
L.
,
2007
, “
On the Application of Cohesive Crack Modeling in Cementitious Materials
,”
Mater. Struct. Constr.
,
40
(
4
), pp.
365
374
.
21.
Dugdale
,
D. S.
,
1959
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
22.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
23.
Bazant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
24.
Elices
,
M.
,
Guinea
,
G.
, and
Gomez
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
137
163
.
25.
Wang
,
W.
, and
Taleghani
,
A. D.
,
2014
, “
Three-Dimensional Analysis of Cement Sheath Integrity Around Wellbores
,”
J. Pet. Sci. Eng.
,
121
, pp.
38
51
.
26.
Feng
,
Y.
,
Li
,
X.
, and
Gray
,
K. E.
,
2017
, “
Development of a 3D Numerical Model for Quantifying Fluid-Driven Interface Debonding of an Injector Well
,”
Int. J. Greenhouse Gas Control
,
62
, pp.
76
90
.
27.
Wang
,
W.
, and
Dahi Taleghani
,
A.
,
2017
, “
Impact of Hydraulic Fracturing on Cement Sheath Integrity: A Modelling Approach
,”
J. Nat. Gas Sci. Eng.
,
44
, pp.
265
277
.
28.
Mai
,
Y. W.
,
2001
, “
Cohesive Zone and Crack-Resistance (R)-Curve of Cementitious Materials and Their Fibre-Reinforced Composites
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
219
234
.
29.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.
30.
Ladva
,
H. K. J.
,
Craster
,
B.
,
Jones
,
T. G. J.
,
Goldsmith
,
G.
, and
Scott
,
D.
,
2005
, “
The Cement-to-Formation Interface in Zonal Isolation
,”
SPE Drill. Completion
,
20
(
3
), pp.
186
197
.
31.
Kakumoto
,
M.
,
Yoneda
,
J.
,
Tenma
,
N.
,
Miyazaki
,
K.
, and
Aoki
,
K.
,
2012
, “
Frictional Strength Between Casing and Cement Under Confining Pressure
,”
International Offshore and Polar Engineering Conference
,
Greece
,
June
, pp.
77
82
.
32.
Jadhav
,
R.
,
Palla
,
V. G. R.
,
Datta
,
A.
, and
Dumbre
,
M.
,
2017
, “
Effect of Casing Coating Materials on Shear-Bond Strength
,”
SPEIATMI Asia Pacific Oil Gas Conference and Exhibition
,
Indonesia
,
October
, pp.
17
19
.
33.
Gonzalez-Chavez
,
M.
,
Dahi Taleghani
,
A.
, and
Olson
,
J. E.
,
2015
, “
A Cohesive Model for Modeling Hydraulic Fractures in Naturally Fractured Formations
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
.
34.
Coussy
,
O.
,
2003
,
Poromechanics
,
John Wiley & Sons, Ltd
,
Chichester, UK
.
35.
Batchelor
,
G. K.
, and
Young
,
A. D.
,
1967
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, p.
220
.
36.
Rocha-Valadez
,
T.
,
Hasan
,
A. R.
,
Mannan
,
S.
, and
Kabir
,
C. S.
,
2014
, “
Assessing Wellbore Integrity in Sustained-Casing-Pressure Annulus
,”
SPE Drill. Completion
,
29
(
1
), pp.
131
138
.
37.
Xu
,
R.
, and
Wojtanowicz
,
A. K.
,
2001
, “
Diagnosis of Sustained Casing Pressure From Bleed-off/Buildup Testing Patterns
,”
SPE Production Operation Symposium.
,
Oklahoma City, OK
,
March
.
38.
Taleghani
,
A. D.
, and
Klimenko
,
D.
,
2015
, “
An Analytical Solution for Microannulus Cracks Developed Around a Wellbore
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062901
.
39.
Sarris
,
E.
, and
Papanastasiou
,
P.
,
2011
, “
The Influence of the Cohesive Process Zone in Hydraulic Fracturing Modelling
,”
Int. J. Fract.
,
167
(
1
), pp.
33
45
.
You do not currently have access to this content.