Abstract

The drag-based vertical-axis Savonius wind rotor is a potential candidate for harvesting renewable energy. It is very simple in design and can be deployed as an off-grid electricity system in remote locations having no access to electricity. The present work aims to develop a novel blade profile for the Savonius rotor in order to improve its performance. In that connection, an arc-elliptical-blade profile has been developed and rotor performance has been assessed through wind tunnel testing at three different Reynolds numbers (Re = 87,039, 107,348, and 131,066). Further, its performance is compared to that of a conventional semicircular-bladed rotor under identical test conditions. The experiments revealed the maximum power coefficient (CPmax) of 0.11, 0.162, 0.213 at Re = 87,039, 107,348, and 131,066, respectively, for the arc-elliptical-bladed rotor. To complement the experimental findings and to examine the flow behavior around the rotor blades, the computational fluid dynamics (CFD) simulations have also been performed using ansys fluent software. The local torque is found to be greater around the advancing arc-elliptical blade than around the advancing semicircular blade. It has also been noticed that the pressure distributions over concave sides are similar regardless of the blade shape.

References

1.
Salleh
,
M. B.
,
Kamaruddin
,
N. M.
, and
Mohamed-Kassim
,
Z.
,
2020
, “
The Effects of Deflector Longitudinal Position and Height on the Power Performance of a Conventional Savonius Turbine
,”
Energy Convers. Manage.
,
226
, p.
113584
.
2.
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Performance Characteristics of Vertical-Axis Off-Shore Savonius Wind and Savonius Hydrokinetic Turbines
,”
Paper ID: OMAE2018-78497, ASME 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22, 2018
.
3.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thèvenin
,
D.
,
2010
, “
Optimization of Savonius Turbines Using an Obstacle Shielding the Returning Blade
,”
Renewable Energy
,
35
(
11
), pp.
2618
2626
.
4.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotors
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
030801
.
5.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluids Eng.
,
111
(
1
), pp.
53
58
.
6.
Amano
,
R. S.
,
2017
, “
Review of Wind Turbine Research in 21st Century
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
050801
.
7.
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A. S.
,
2018
, “
A Critical Review of Vertical Axis Wind Turbines for Urban Applications
,”
Renewable Sustainable Energy Rev.
,
89
, pp.
281
291
.
8.
Doso
,
O.
, and
Gao
,
S.
,
2020
, “
Application of Savonius Rotor for Hydrokinetic Power Generation
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
014501
.
9.
Shaheen
,
M.
,
El-Sayed
,
M.
, and
Abdallah
,
S.
,
2015
, “
Numerical Study of Two-Bucket Savonius Wind Turbine Cluster
,”
J. Wind Eng. Ind. Aerodyn.
,
137
, pp.
78
89
.
10.
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Performance Estimation of Savonius Wind and Savonius Hydrokinetic Turbines Under Identical Power Input
,”
J. Renewable Sustainable Energy
,
10
(
6
), p.
064704
.
11.
Al-Ghriybah
,
M.
,
Zulkafli
,
M. F.
,
Didane
,
D. H.
, and
Mohd
,
S.
,
2019
, “
The Effect of Inner Blade Position on the Performance of the Savonius Rotor
,”
Sustainable Energy Technol. Assess.
,
36
, p.
100534
.
12.
Kumar
,
A.
, and
Saini
,
R,P
,
2016
, “
Performance Parameters of Savonius Type Hydrokinetic Turbine—A Review
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
289
310
.
13.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
14.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1992
, “
Visualization Study of the Flow in and Around a Savonius Rotor
,”
Exp. Fluids
,
12
(
6
), pp.
407
412
.
15.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
16.
Sheldahl
,
R. E.
,
Feltz
,
L. V.
, and
Blackwell
,
B. F.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
.
17.
Nasef
,
M. H.
,
El-Askary
,
W. A.
,
Abdel-Hamid
,
A. A.
, and
Gad
,
H. E.
,
2013
, “
Evaluation of Savonius Rotor Performance: Static and Dynamic Studies
,”
J. Wind Eng. Ind. Aerodyn.
,
123
, pp.
1
11
.
18.
Alom
,
N.
, and
Saha
,
U. K.
,
2017
, “
Arriving at the Optimum Overlap Ratio for an Elliptical-Bladed Savonius Rotor
,”
Proceedings of ASME Turbo Expo 2017 Turbine Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
19.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
.
20.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
.
21.
Sivasegaram
,
S.
, and
Sivapalan
,
S.
,
1983
, “
Augmentation of Power in Slow-Running Vertical-Axis Wind Rotors Using Multiple Vanes
,”
Wind Eng.
,
7
(
1
), pp.
12
19
.
22.
Bergeles
,
G.
, and
Athanassiadis
,
N.
,
1982
, “
On the Flow Field of the Savonius Rotor
,”
J. Wind Eng.
,
6
(
3
), pp.
140
148
.
23.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
24.
Vance
,
W.
,
1973
, “
Vertical Axis Wind Rotors—Status and Potential
,”
Proceedings of the Conference on Wind Energy Conversion Systems
, pp.
96
102
25.
Shankar
,
P. N.
,
1979
, “
Development of Vertical Axis Wind Turbines
,”
Proc. Indian Acad. Sci. C
,
2
(
Pt. 1
), pp.
49
66
.
26.
Saha
,
U. K.
,
Thotla
,
S.
, and
Maity
,
D.
,
2008
, “
Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
8–9
), pp.
1359
1375
.
27.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
227
(
4
), pp.
528
542
.
28.
Basumatary
,
M.
,
Biswas
,
A.
, and
Misra
,
R. D.
,
2018
, “
CFD Analysis of an Innovative Combined Lift and Drag (CLD) Based Modified Savonius Water Turbine
,”
Energy Convers. Manage.
,
174
, pp.
72
87
.
29.
Irabu
,
K.
, and
Roy
,
J. N.
,
2011
, “
Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
653
659
.
30.
Roy
,
S.
, and
Ducoin
,
A.
,
2016
, “
Unsteady Analysis on the Instantaneous Forces and Moment Arms Acting on a Novel Savonius-Style Wind Turbine
,”
Energy Convers. Manage.
,
121
, pp.
281
296
.
31.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Examining the Aerodynamic Drag and Lift Characteristics of a Newly Developed Elliptical- Bladed Savonius Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051201
.
32.
Chen
,
L.
,
Chen
,
J.
, and
Zhang
,
Z.
,
2018
, “
Review of the Savonius Rotor’s Blade Profile and Its Performance
,”
J. Renewable Sustainable Energy
,
10
(
1
), p.
013306
.
33.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
34.
Alom
,
N.
,
Kolaparthi
,
S. C.
,
Gadde
,
S. C.
, and
Saha
,
U. K.
,
2016
, “
Aerodynamic Design Optimization of Elliptical-Bladed Savonius-Style Wind Turbine by Numerical Simulations
,”
Paper No. OMAE2016-55095, Proceeding of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19–24
.
35.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C. T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
904
921
.
36.
Abraham
,
J. P.
,
Plourde
,
B. D.
,
Mowry
,
G. S.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2012
, “
Summary of Savonius Wind Turbine Development and Future Applications for Small-Scale Power Generation
,”
J. Renewable Sustainable Energy
,
4
(
4
), p.
042703
.
37.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p. 050801.
38.
Mari
,
M.
,
Venturini
,
M.
, and
Beyene
,
A.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbines Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
.
39.
Rathod
,
U. H.
,
Talukdar
,
P. K.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2019
, “
Effect of Capped Vents on Torque Distribution of a Semicircular-Bladed Savonius Wind Rotor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
101201
.
40.
Manwell
,
J. F.
,
Mcgovan
,
J. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
John Wiley & Sons Ltd
.,
New York
.
41.
Jacob
,
J.
, and
Chatterjee
,
D.
,
2019
, “
Design Methodology of Hybrid Turbine Towards Better Extraction of Wind Energy
,”
Renewable Energy
,
131
, pp.
625
643
.
42.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
43.
Holman
,
J. P.
,
2007
,
Experimental Methods for Engineers
, 7th ed.,
Tata McGraw-Hill Publications
,
India
.
44.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manage.
,
158
, pp.
36
49
.
45.
Nobile
,
R.
,
Vahdati
,
M.
,
Barlow
,
J. F.
, and
Mewburn-Crook
,
A.
,
2014
, “
Unsteady Flow Simulation of a Vertical Axis Augmented Wind Turbine: A Two-Dimensional Study
,”
J. Wind Eng. Ind. Aerodyn.
,
125
, pp.
168
179
.
46.
D’Alessandro
,
V.
,
Montelpare
,
S.
,
Ricci
,
R.
, and
Secchiaroli
,
A.
,
2010
, “
Unsteady Aerodynamics of a Savonius Wind Rotor: A New Computational Approach for the Simulation of Energy Performance
,”
Energy
,
35
(
8
), pp.
3349
3363
.
47.
Howell
,
R.
,
Qin
,
N.
,
Edwards
,
J.
, and
Durrani
,
N.
,
2010
, “
Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine
,”
Renewable Energy
,
35
(
2
), pp.
412
422
.
48.
Dobrev
,
I.
, and
Massouh
,
F.
,
2011
, “
CFD and PIV Investigation of Unsteady Flow Through Savonius Wind Turbine
,”
Energy Procedia
,
6
, pp.
711
720
.
49.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
73
83
.
50.
Banerjee
,
A.
,
Roy
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2014
, “
Unsteady Flow Analysis Around an Elliptic-Bladed Savonius-Style Wind Turbine
,”
ASME Gas Turbine India Conference
,
New Delhi, India
,
Dec. 15–17
, p.
V001T05A001
.
51.
Abraham
,
J. P.
,
Mowry
,
G. S.
,
Plourde
,
B. D.
,
Sparrow
,
E. M.
, and
Minkowycz
,
W. J.
,
2011
, “
Numerical Simulations of Fluid Flow Around a Vertical-Axis Turbine
,”
J. Renewable Sustainable Energy
,
3
(
3
), pp.
1
13
.
You do not currently have access to this content.