Abstract

A novel geothermal desalination system is proposed and optimized in terms of maximizing the exergy efficiency and minimizing the total cost rate of the system. The system includes a geothermal steam turbine with a flash chamber, a reverse osmosis unit, and a multi-effect distillation system. First, exergy and economic analyses of the system are performed using Engineering Equation software. Then, an artificial neural network is used to develop a mathematical function linking input design variables and objective functions for this system. Finally, a multi-objective optimization is carried out using a genetic algorithm to determine the optimum solutions. The Utopian method is used to select the favorable solution from the optimal solutions in the Pareto frontier. Also, the distributions of the values of design variables within their allowable ranges are investigated. It is found that the optimum exergy efficiency and total cost rate of the geothermal desalination system are 29.6% and 3410 $/h, respectively. Increasing the seawater salinity and decreasing the intake geothermal water temperature result in an improvement in both exergy efficiency and total cost rate of the system, while variations in the flash pressure and turbine outlet pressure lead to a conflict between the exergy efficiency and the total cost rate of the geothermal desalination system over the range of their variations.

References

1.
Siddiqui
,
O.
, and
Dincer
,
I.
,
2019
, “
Exergetic Performance Investigation of Varying Flashing From Single to Quadruple for Geothermal Power Plants
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122301
.
2.
Sharan
,
P.
,
Kitz
,
K.
,
Wendt
,
D.
,
McTigue
,
J.
, and
Zhu
,
G.
,
2021
, “
Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010906
.
3.
Manente
,
G.
, and
Lazzaretto
,
A.
,
2020
, “
Improved Layouts and Performance of Single- and Double-Flash Steam Geothermal Plants Generated by the Heatsep Method
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
090902
.
4.
Kanoğlu
,
M.
,
Çengel
,
Y. A.
, and
Turner
,
R. H.
,
1998
, “
Incorporating a District Heating/Cooling System Into an Existing Geothermal Power Plant
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
179
184
.
5.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
.
6.
Nazari
,
S.
,
Bahiraei
,
M.
,
Moayedi
,
H.
, and
Safarzadeh
,
H.
,
2020
, “
A Proper Model to Predict Energy Efficiency, Exergy Efficiency, and Water Productivity of a Solar Still via Optimized Neural Network
,”
J. Cleaner Prod.
,
277
(
1
), p.
123232
.
7.
Makkeh
,
S. A.
,
Ahmadi
,
A.
,
Esmaeilion
,
F.
, and
Ehyaei
,
M. A.
,
2020
, “
Energy, Exergy and Exergoeconomic Optimization of a Cogeneration System Integrated With Parabolic Trough Collector-Wind Turbine With Desalination
,”
J. Cleaner Prod.
,
273
(
1
), p.
123122
.
8.
Gnaifaid
,
H.
, and
Ozcan
,
H.
,
2021
, “
Development and Multiobjective Optimization of an Integrated Flash-Binary Geothermal Power Plant With Reverse Osmosis Desalination and Absorption Refrigeration for Multi-Generation
,”
Geothermics
,
89
(
1
), p.
101949
.
9.
Ehyaei
,
M. A.
,
Ahmadi
,
A.
,
Assad
,
M. E. H.
, and
Rosen
,
M. A.
,
2020
, “
Investigation of an Integrated System Combining an Organic Rankine Cycle and Absorption Chiller Driven by Geothermal Energy: Energy, Exergy, and Economic Analyses and Optimization
,”
J. Cleaner Prod.
,
258
(
1
), p.
120780
.
10.
Hoseinzadeh
,
S.
,
Yargholi
,
R.
,
Kariman
,
H.
, and
Heyns
,
P. S.
,
2020
, “
Exergoeconomic Analysis and Optimization of Reverse Osmosis Desalination Integrated With Geothermal Energy
,”
Environ. Prog. Sustainable Energy
,
39
(
5
), p.
13405
.
11.
Kolahi
,
M. R.
,
Amidpour
,
M.
, and
Yari
,
M.
,
2020
, “
Multi-objective Metaheuristic Optimization of Combined Flash-Binary Geothermal and Humidification Dehumidification Desalination Systems
,”
Desalination
,
490
(
1
), p.
114456
.
12.
Musharavati
,
F.
,
Khanmohammadi
,
S.
, and
Pakseresht
,
A.
,
2021
, “
A Novel Multi-Generation Energy System Based on Geothermal Energy Source: Thermo-Economic Evaluation and Optimization
,”
Energy Convers. Manage.
,
230
(
1
), p.
113829
.
13.
Abdolalipouradl
,
M.
,
Mohammadkhani
,
F.
,
Khalilarya
,
S.
, and
Yari
,
M.
,
2020
, “
Thermodynamic and Exergoeconomic Analysis of Two Novel Tri-Generation Cycles for Power, Hydrogen and Freshwater Production From Geothermal Energy
,”
Energy Convers. Manage.
,
226
(
1
), p.
113544
.
14.
Farsi
,
A.
, and
Dincer
,
I.
,
2019
, “
Development and Evaluation of an Integrated MED/Membrane Desalination System
,”
Desalination
,
463
(
1
), pp.
55
68
.
15.
Assareh
,
E.
,
Alirahmi
,
S. M.
, and
Ahmadi
,
P.
,
2021
, “
A Sustainable Model for the Integration of Solar and Geothermal Energy Boosted With Thermoelectric Generators (TEGs) for Electricity, Cooling and Desalination Purpose
,”
Geothermics
,
92
(
1
), p.
102042
.
16.
Rosen
,
M. A.
, and
Koohi-Fayegh
,
S.
,
2017
,
Geothermal Energy: Sustainable Heating and Cooling Using the Ground
,
John Wiley & Sons
,
UK
.
17.
Alavy
,
M.
,
Peiris
,
M.
,
Wang
,
J.
, and
Rosen
,
M. A.
,
2021
, “
Assessment of a Novel Phase Change Material-Based Thermal Caisson for Geothermal Heating and Cooling
,”
Energy Convers. Manage.
,
234
(
1
), p.
113928
.
18.
Abbasi
,
H. R.
, and
Pourrahmani
,
H.
,
2020
, “
Multi-criteria Optimization of a Renewable Hydrogen and Freshwater Production System Using HDH Desalination Unit and Thermoelectric Generator
,”
Energy Convers. Manage.
,
214
(
1
), p.
112903
.
19.
Hamm
,
S. G.
,
Anderson
,
A.
,
Blankenship
,
D.
,
Boyd
,
L. W.
,
Brown
,
E. A.
,
Frone
,
Z.
,
Hamos
,
I.
,
Hughes
,
J.H
,
Kalmuk
,
M
,
Marble
,
A
,
McKittrick
,
A.M.W
,
Metcalfe
,
E
,
Morse
,
L.J
,
Nieto
,
A
,
Payne
,
J
,
Porse
,
S.L
,
Prisjatschew
,
A
,
Stutz
,
G.R
,
Tasca
,
C
,
Vandermeer
,
W
,
Watson
,
J
,
Weathers
,
M
, and
Winick
,
J
,
2021
, “
Geothermal Energy R&D: An Overview of the US Department of Energy’s Geothermal Technologies Office
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
100903
.
20.
Ansarinasab
,
H.
, and
Hajabdollahi
,
H.
,
2020
, “
Multi-objective Optimization of a Geothermal-Based Multigeneration System for Heating, Power and Purified Water Production Purpose Using Evolutionary Algorithm
,”
Energy Convers. Manage.
,
223
(
1
), p.
113476
.
21.
Salehi
,
S.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2018
, “
Multi-objective Optimization of Two Double-Flash Geothermal Power Plants Integrated With Absorption Heat Transformation and Water Desalination
,”
J. Cleaner Prod.
,
195
(
1
), pp.
796
809
.
22.
Cao
,
Y.
,
Xu
,
D.
,
Togun
,
H.
,
Dhahad
,
H. A.
,
Azariyan
,
H.
, and
Farouk
,
N.
,
2021
, “
Feasibility Analysis and Capability Characterization of a Novel Hybrid Flash-Binary Geothermal Power Plant and Trigeneration System Through a Case Study
,”
Int. J. Hydrogen Energy
,
46
(
52
), pp.
26241
26262
.
23.
Alirahmi
,
S. M.
, and
Assareh
,
E.
,
2020
, “
Energy, Exergy, and Exergoeconomics (3E) Analysis and Multi-Objective Optimization of a Multi-Generation Energy System for Day and Night Time Power Generation—Case Study: Dezful City
,”
Int. J. Hydrogen Energy
,
45
(
56
), pp.
31555
31573
.
24.
Farsi
,
A.
,
Mohammadi
,
S. H.
, and
Ameri
,
M.
,
2017
, “
Thermo-economic Comparison of Three Configurations of Combined Supercritical CO2 Refrigeration and Multi-Effect Desalination Systems
,”
Appl. Therm. Eng.
,
112
(
1
), pp.
855
870
.
25.
Thiel
,
G. P.
,
Tow
,
E. W.
,
Banchik
,
L. D.
, and
Chung
,
H. W.
,
2015
, “
Energy Consumption in Desalinating Produced Water From Shale Oil and Gas Extraction
,”
Desalination
,
366
(
1
), pp.
94
112
.
26.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2011
, “
Second Law Analysis of Reverse Osmosis Desalination Plants: An Alternative Design Using Pressure Retarded Osmosis
,”
Energy
,
36
(
11
), pp.
6617
6626
.
27.
Mistry
,
K. H.
,
2013
, “
Irreversibilities and Nonidealities in Desalination Systems
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
28.
Askari
,
I. B.
,
Ameri
,
M.
, and
Calise
,
F.
,
2018
, “
Energy, Exergy and Exergo-Economic Analysis of Different Water Desalination Technologies Powered by Linear Fresnel Solar Field
,”
Desalination
,
425
(
1
), pp.
37
67
.
29.
Zhao
,
Y.
, and
Wang
,
J.
,
2016
, “
Exergoeconomic Analysis and Optimization of a Flash-Binary Geothermal Power System
,”
Appl. Energy
,
179
(
1
), pp.
159
170
.
30.
Turton
,
R.
,
Bailie
,
R. C.
,
Whiting
,
W. B.
, and
Shaeiwitz
,
J. A.
,
2008
,
Analysis, Synthesis and Design of Chemical Processes
,
Pearson Education
,
Upper Saddle River, NJ
.
31.
Verdier
,
F.
,
2011
,
MENA Regional Water Outlook, Part II, Desalination Using Renewable Energy. Final Report
,
Fichtner
,
Germany
, http://www.dlr.de/tt/Portaldata/41/Resources/dokumente/institut/system/projects/MENA_regional_water_outlook.pdf, Accessed December 23, 2021.
32.
Loutatidou
,
S.
, and
Arafat
,
H. A.
,
2015
, “
Techno-Economic Analysis of MED and RO Desalination Powered by Low-Enthalpy Geothermal Energy
,”
Desalination
,
365
(
1
), pp.
277
292
.
33.
Energi
,
2012
, “
Technology data for energy plants
,” https://ens.dk/sites/ens.dk/files/Analyser/c_teknologikatalog_for_individuelle_varmeanlaeg_og_energitransport_2012.pdf, Accessed December 23, 2021.
34.
Akbari
,
M.
,
Mahmoudi
,
S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy
,”
Sustainability
,
6
(
4
), pp.
1796
1820
.
35.
Farsi
,
A.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2020
, “
Multi-objective Optimization of an Experimental Integrated Thermochemical Cycle of Hydrogen Production With an Artificial Neural Network
,”
Int. J. Hydrogen Energy
,
45
(
46
), pp.
24355
24369
.
36.
Soleimani
,
R.
,
Shoushtari
,
N. A.
,
Mirza
,
B.
, and
Salahi
,
A.
,
2013
, “
Experimental Investigation, Modeling and Optimization of Membrane Separation Using Artificial Neural Network and Multi-Objective Optimization Using Genetic Algorithm
,”
Chem. Eng. Res. Des.
,
91
(
5
), pp.
883
903
.
You do not currently have access to this content.