Abstract

Small wind turbines (WTs) are adequate for electricity generation in isolated areas to promote local expansion of commercial activities and social inclusion. Blade element momentum (BEM) method is usually used for performance prediction, but it generally produces overestimated predictions since the wake effects are not precisely accounted for. Lifting line theory (LLT) can represent the blade and wake effects more precisely. In the present investigation, the two methods are analyzed and their predictions of the aerodynamic performance of small WTs are compared. Conducted simulations showed a computational time of about 149.32 s for the Gottingen GO 398 based rotor simulated by the BEM and 1007.7 s for simulation by the LLT. The analysis of the power coefficient showed a maximum difference between the predictions of the two methods of about 4.4% in the case of Gottingen GO 398 airfoil-based rotor and 6.3% for simulations of the Joukowski J 0021 airfoil. In the case of the annual energy production, a difference of 2.35% is found between the predictions of the two methods. The effects of the blade geometrical variants such as twist angle and chord distributions increase the numerical deviations between the two methods due to the big number of iterations in the case of LLT. The cases analyzed showed deviations between 3.4% and 4.1%. As a whole, the results showed good performance of both methods; however, the LLT provides more precise results and more information on the local flow over the rotor blades.

References

1.
Dumitrescu
,
H.
, and
Cardos
,
V.
,
1998
, “
Wind Turbine Aerodynamic Performance by Lifting Line Method
,”
Int. J. Rotat. Mach.
,
4
(
3
), pp.
141
149
.
2.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renew. Sustain. Energy Rev.
,
56
(
4
), pp.
1351
1371
.
3.
O’Brien
,
J. M.
,
Young
,
T. M.
,
O’Mahoney
,
D. C.
, and
Griffin
,
P. C.
,
2017
, “
Horizontal Axis Wind Turbine Research: A Review of Commercial CFD, FE Codes and Experimental Practices
,”
Prog. Aerosp. Sci.
,
92
(
7
), pp.
1
24
.
4.
Chattot
,
J.
,
2003
, “
Optimization of Wind Turbines Using Helicoidal Vortex Model
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
418
424
.
5.
Rosenberg
,
A.
, and
Sharma
,
A.
,
2016
, “
A Prescribed-Wake Vortex Lattice Method for Preliminary Design of Co-Axial, Dual-Rotor Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061002
.
6.
Phillips
,
W. F.
, and
Snyder
,
D. O.
,
2000
, “
Modern Adaptation of Prandtl’s Classic Lifting-Line Theory
,”
J. Aircr.
,
37
(
4
), pp.
662
670
.
7.
Vermeer
,
L. J.
,
Sorensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
8.
Hansen
,
M. O. L.
,
Sørensen
,
J. N.
,
Voutsinas
,
S.
,
Sørensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.
9.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
10.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
.
11.
Duquette
,
M. M.
, and
Visser
,
K. D.
,
2003
, “
Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
425
432
.
12.
Okulov
,
V. L.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
,
Naumov
,
I. V.
, and
Tsoy
,
M. A.
,
2017
, “
Power Properties of Two Interacting Wind Turbine Rotors
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051210
.
13.
Gupta
,
S.
, and
Leishman
,
J. G.
,
2005
, “
Comparison of Momentum and Vortex Methods for the Aerodynamic Analysis of Wind Turbines
,”
AIAA Aerospace Sciences Meeting Exhibit
,
Reno, NV
, Vol. 43, No. 6.
14.
Grasso
,
F.
,
van Garrel
,
A.
, and
Schepers
,
G.
,
2011
, “
Development and Validation of Generalized Lifting Line Based Code for Wind Turbine Aerodynamics
,”
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Orlando, FL
,
Jan. 4–7
, pp.
146
152
.
15.
Schubel
,
P. J.
, and
Crossley
,
R. J.
,
2012
, “
Wind Turbine Blade Design Review
,”
Wind Eng.
,
36
(
4
), pp.
365
388
.
16.
Kinnas
,
S. A.
,
Xu
,
W.
,
Yu
,
Y.
, and
He
,
L.
,
2011
, “
Computational Methods for the Design and Prediction of Performance of Tidal Turbines
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
1
), p.
011101
.
17.
Wang
,
L.
,
Tang
,
X.
, and
Liu
,
X.
,
2012
, “
Optimized Chord and Twist Angle Distributions of Wind Turbine Blade Considering Reynolds Number Effects
,”
International Conference on Wind Energy: Materials, Engineering and Policies
,
Hyderabad, TG
,
Nov. 22–23
, pp.
9
15
.
18.
Gupta
,
V.
,
2012
, “
Aerodynamic and Structural Analyses of the 5 MW Wind Turbine Using BEM and Lifting Line Theories
,” Thesis Report,
Eindhoven University of Technology
,
Eindhoven
.
19.
Pourrajabian
,
A.
,
Ebrahimi
,
R.
, and
Mirzaei
,
M.
,
2014
, “
Applying Micro Scales of Horizontal Axis Wind Turbines for Operation in Low Wind Speed Regions
,”
Energy Convers. Manage.
,
87
(
11
), pp.
119
127
.
20.
Hasan
,
M.
,
El-Shahat
,
A.
, and
Rahman
,
M.
,
2017
, “
Performance Investigation of Three Combined Airfoils Bladed Small Scale Horizontal Axis Wind Turbine by BEM and CFD Analysis
,”
J. Power Energy Eng.
,
5
(
5
), pp.
14
27
.
21.
Hasan
,
A. S.
,
Elgammal
,
T.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.
22.
Hasan
,
A. S.
,
Abousabae
,
M.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
011302
.
23.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Implementation, Optimization, and Validation of a Nonlinear Lifting Line-Free Vortex Wake Module Within the Wind Turbine Simulation Code QBLADE
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072601
.
24.
Melo
,
D. B.
,
Baltazar
,
J.
, and
Falcão de Campos
,
J. A. C.
,
2018
, “
A Numerical Wake Alignment Method for Horizontal Axis Wind Turbines Withthe Lifting Line Theory
,”
J. Wind Eng. Ind. Aerodyn.
,
174
(
3
), pp.
382
390
.
25.
Xu
,
B.
,
Wang
,
T.
,
Yuan
,
Y.
,
Zhao
,
Z.
, and
Liu
,
H.
,
2018
, “
A Simplified Free Vortex Wake Model of Wind Turbines for Axial Steady Conditions
,”
Appl. Sci.
,
8
(
6
), p.
866
.
26.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
, 2nd ed.,
Earthscan
,
London
.
27.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
Wiley-Blackwell/John Wiley & Sons
,
London
.
28.
Sebastian
,
T.
,
2012
,
The Aerodynamics and Near Wake of an Offshore Floating Horizontal Axis Wind Turbine
,
University of Massachusetts Amherst
,
Amherst, MA
. Open Access Dissertations, 516, https://scholarworks.umass.edu/open_access_dissertations/516
29.
Anderson
,
J. D.
,
2011
,
Fundamentals of Aerodynamics
,
McGraw-Hill
,
New York
.
30.
Abedi
,
H.
,
2013
, “
Development of Vortex Filament Method for Aerodynamic Loads on Rotor Blades
,”
thesis for Licentiate of Engineering, Department of Applied Mechanics, Chalmers University of Technology, No. 2013:22, ISSN 1652-8565
.
31.
Ramasamy
,
M.
, and
Leishman
,
J. G.
,
2007
, “
A Reynolds Number-Based Blade Tip Vortex Model
,”
J. Am. Helicopter Soc.
,
52
(
7
), pp.
214
223
.
32.
Governo Do Estado De São Paulo
,
2012
,
Atlas Eólico do Estado de São Paulo
,
Secretaria De Energia
,
São Paulo, Brazil
.
33.
Liu
,
X.
,
Wang
,
L.
, and
Tang
,
X.
,
2013
, “
Optimized Linearization of Chord and Twist Angle Profiles for Fixed-Pitch Fixed-Speed Wind Turbine Blades
,”
Renew. Energy
,
57
(
9
), pp.
111
119
.
34.
Wang
,
W.
,
Caro
,
S.
,
Fouad
,
B.
, and
Mejia
,
S.
,
2014
, “
A Simplified Morphing Blade for Horizontal Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p.
011018
.
35.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Janger
,
D. W.
,
Cotrell
,
J. R.
,
Schereck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,”
NREL—National Renewable Energy Laboratory
.
36.
Lanzafame
,
R.
, and
Messina
,
M.
,
2010
, “
Horizontal Axis Wind Turbine Working at Maximum Power Coefficient Continuously
,”
Renew. Energy
,
35
(
1
), pp.
301
306
.
37.
Paulsen
,
U. S.
,
2011
,
Work Package 1B.2 Under the European Commission, Integrated Wind Turbine Design (UPWIND): Verification of Long-Term Load Measurement Technique
,
Risø National Laboratory for Sustainable Energy, Technical University of Denmark
,
Roskilde
.
You do not currently have access to this content.