Abstract

High-temperature superconductor (HTS)-based technology is getting increased attention as the most appropriate technology for electric power transmission towards reduction in CO2 emissions and augmentation of the energy supply. However, this cryogenic technology demands highly efficient and economically reliable cooling systems, having a cooling capacity of 2–10 kW at a temperature range of 65–80 K. The refrigeration cost is one of the critical issues for such superconducting technologies to penetrate the marketplace. Thus, cryocoolers with modification based on reverse Brayton cycle (RBC) comprising different turbine arrangements are analyzed to meet the demand of cryogenic technologies. The exergoeconomic analysis which combines the exergy and economic analysis is performed to identify the source of exergy destruction that affects the economy and performance of the systems based on RBC. The optimized RBC configurations using the exergoeconomic tool are evaluated and compared to find a thermodynamically enhanced configuration with reduced refrigeration cost. These configurations are compared using exergy, economic, exergoeconomic, design evaluation parameters, and environmental footprint. The results indicate that the cost of exergy destruction reduces around 30% while optimizing these novel RBC configurations. The saving with successful running for ten years is around 6% of the total investment using parallel expansion with different pressure ratio (PED) RBC configuration, which is one of the best performances with 41.1% exergy efficiency. Based on the study, recommendations based on exergoeconomic parameters are also provided for further improvement in the cycles.

References

1.
IEA
,
2019
, “
Global Energy Demand Rose by 2.3% in 2018, Its Fastest Pace in the Last Decade
,” IEA, 26 Mar. [Online], https://www.iea.org/news/global-energy-demand-rose-by-23-in-2018-its-fastest-pace-in-the-last-decade
2.
IEA
,
2020
,
World Energy Outlook 2020
.
Paris
:
IEA
, https://www.iea.org/reports/world-energy-outlook-2020
3.
Today in Energy—U.S. Energy Information Administration (EIA)
,
Oct 2015
, “
India Aims to Reduce High Electricity Transmission and Distribution System Losses—Today in Energy—U.S.
,” http://www.eia.gov/todayinenergy/detail.cfm?id=23452
4.
Thomas
,
H.
,
Marian
,
A.
,
Chervyakov
,
A.
,
Stückrad
,
S.
, and
Rubbia
,
C.
,
2016
, “
Efficiency of Superconducting Transmission Lines: An Analysis With Respect to the Load Factor and Capacity Rating
,”
Electr. Power Syst. Res.
,
141
, pp.
381
391
.
5.
Jones
,
C. I.
, and
McManus
,
M. C.
,
2010
, “
Life-Cycle Assessment of 11 kV Electrical Overhead Lines and Underground Cables
,”
J. Cleaner Prod.
,
18
(
14
), pp.
1464
1477
.
6.
Thomas
,
H.
,
Marian
,
A.
,
Chervyakov
,
A.
,
Stückrad
,
S.
,
Salmieri
,
D.
, and
Rubbia
,
C.
,
2016
, “
Superconducting Transmission Lines—Sustainable Electric Energy Transfer With Higher Public Acceptance?
Renew. Sustain. Energy Rev.
,
55
, pp.
59
72
.
7.
Blazewicz
,
S.
,
Walls
,
D. J.
,
Small
,
F.
,
Tobias
,
S.
, and
Bradshaw
,
D.
,
2006
, “High Temperature Superconductivity Market Readiness Review,” https://studylib.net/doc/18296258/high-temperature-superconductivity-market-readiness-review
8.
Hirai
,
H.
,
Suzuki
,
Y.
,
Hirokawa
,
M.
,
Kobayashi
,
H.
,
Kamioka
,
Y.
,
Iwakuma
,
M.
, and
Shiohara
,
Y.
,
2009
, “
Development of a Turbine Cryocooler for High Temperature Superconductor Applications
,”
Physica C
,
469
(
15–20
), pp.
1857
1861
.
9.
Turbo-Brayton Cryogenic Systems|Air Liquid Advanced Technologies
,” https://advancedtech.airliquide.com/turbo-brayton-cryogenic-systems, Accessed May 12, 2020.
10.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2018
, “
Thermoeconomic Analysis of Reverse Brayton Cycle Based Cryocooler
,”
Volume 6B: Energy
,
USA
,
Nov. 9
,
p. V06BT08A058
. http://dx.odi.org/10.1115/IMECE2018-87190
11.
Gouge
,
M. J.
,
Demko
,
J. A.
,
McConnell
,
B. W.
, and
Pfotenhauer
,
O. J. M.
,
2002
, “Cryogenics Assessment Report.”
12.
Bi
,
Y. F.
,
2013
, “
Cooling and Cryocoolers for HTS Power Applications
,”
Appl. Supercond. Electromagnet.
,
4
(
1
), pp.
97
108
.
13.
Lynch
,
N.
,
2004
, “
Large Scale Cryocooler Development for Superconducting Electric Power Applications (HTS-4)
,”
Cryocoolers 13
,
New Orleans, LA
,
Mar. 29
.
14.
Gouge
,
M. J.
,
2004
, “
Cryogenic Cooling Technology for HTS Electric Machinery
,”
IEEE Power Engineering Society General Meeting, 2004
,
Denver, CO
,
June 6
, Vol. 2, pp.
1
3
.
15.
Saji
,
N.
,
2002
, “
Design of Oil-Free Simple Turbo Type 65K/6 KW Helium and Neon Mixture Gas Refrigerator for High Temperature Superconducting Power Cable Cooling
,”
AIP Conf. Proc.
,
613
, pp.
893
902
.
16.
Park
,
J. H.
,
Kwon
,
Y. H.
, and
Kim
,
Y. S.
,
2005
, “
The Design and Fabrication of a Reverse Brayton Cycle Cryocooler System for the High Temperature Superconductivity Cable Cooling
,”
Cryogenics (Guildf)
,
45
(
1
), pp.
71
75
.
17.
Yoshida
,
S.
,
Hirai
,
H.
,
Takaike
,
A.
,
Hirokawa
,
M.
,
Aizawa
,
Y.
,
Kamioka
,
Y.
,
Okamoto
,
H.
,
Hayashi
,
H.
,
Shiohara
,
Y.
, and
Weisend
,
J. G.
,
2010
, “
New Design of Neon Refrigerator for HTS Power Machines
,”
AIP Conf. Proc.
,
1218
, pp.
1131
1138
.
18.
Chang
,
H. M.
,
Park
,
C. W.
,
Yang
,
H. S.
,
Sohn
,
S. H.
,
Lim
,
J. H.
,
Oh
,
S. R.
, and
Hwang
,
S. D.
,
2012
, “
Thermodynamic Design of 10 kW Brayton Cryocooler for HTS Cable
,”
AIP Conf. Proc.
,
1434
(
57
), pp.
1664
1671
.
19.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley & Sons, Inc.
,
New York
.
20.
Ghosh
,
P.
,
2002
,
Analytical and Experimental Studies on Cryogenic Turboexpander
,
Indian Institute of Technology
,
Kharagpur
.
21.
Sixsmith
,
H.
,
1984
, “
Miniature Cryogenic Expansion Turbines—A Review
,”
Adv. Cryog. Eng.
,
29
, pp.
511
523
.
22.
Balje
,
O. E.
,
1981
,
Turbomachines—A Guide to Design Selection and Theory
,
Wiley Interscience
,
New York
.
23.
Kun
,
L. C.
,
1988
,
Advances in Cryogenic Engineering
,
Springer
,
Boston, MA
, pp.
963
973
.
24.
Alex
,
A.
, and
Ghosh
,
P.
,
2016
, “
Helium Turboexpander for Cryogenic Refrigeration and Liquefaction Cycles: Transient Analysis of Rotor-Stator Interaction
,”
Proceeding of ASME Turbo Expo: Turbomachinery Technical Conference Exposition
,
South Korea
,
June 13
,
p. V003T06A009
. http://dx.doi.org/10/1115/GT2016-56793
25.
Chang
,
H. M.
,
Gwak
,
K. H.
,
Jung
,
S.
,
Yang
,
H. S.
, and
Hwang
,
S. D.
,
2015
, “
Plate-Fin Heat-Exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable
,”
Phys. Procedia
,
67
, pp.
221
226
.
26.
Thomas
,
R. J.
,
2012
, Exergy Approach in Designing Large-Scale Helium Liquefiers, Ph.D Thesis, IIT Kharagpur, Kharagpur.
27.
Thomas
,
R. J.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
,
2012
, “
Role of Heat Exchangers in Helium Liquefaction Cycles: Simulation Studies Using Collins Cycle
,”
Fusion Eng. Des.
,
87
(
1
), pp.
39
46
.
28.
Hilal
,
M. A.
,
1979
, “
Optimization of Helium Refrigerators and Liquefiers for Large Superconducting Systems
,”
Cryogenics (Guildf)
,
19
(
7
), pp.
415
420
.
29.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2019
, “
Splitting Physical Exergy: Theory and Application
,”
Energy
,
167
, pp.
698
707
.
30.
Barron
,
R. F.
,
1985
,
Cryogenic Systems
, 2nd ed.,
Oxford University Press
,
New York
.
31.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8–9
), pp.
1257
1289
.
32.
Valero
,
A.
,
Lozano
,
M. A.
,
Serra
,
L.
,
Tsatsaronis
,
G.
,
Pisa
,
J.
,
Frangopoulos
,
C.
, and
von Spakovsky
,
M. R.
,
1994
, “
CGAM Problem: Definition and Conventional Solution
,”
Energy
,
19
(
3
), pp.
279
286
.
33.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2017
, “
Study of Reverse Brayton Cryocooler With Helium–Neon Mixture for HTS Cable
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
278
(
1
), pp.
1
9
.
34.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2017
, “
Performance Analysis of Cryocoolers Based on Reverse Brayton Cycle and Its Modifications for Cooling HTS Devices
,”
Indian J. Cryog.
,
42
(
1
), p.
61
.
35.
Dhillon
,
A. K.
,
Dutta
,
R.
, and
Ghosh
,
P.
,
2017
, “
Exergetic Analysis of Reverse Brayton Cryocooler for Different Cooling Loads at 65K for HTS Cables
,”
14th Cryogenics 2017 IIR International Conference
,
Germany
,
May 15
, pp.
15
19
.
36.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2020
, “
Performance Characteristics Map Using Exergy Analysis of Reverse Brayton Cryocooler for HTS Applications: Selection, Optimization, Design and Operational Guidelines
,”
Cryogenics (Guildf)
,
106
, p.
103024
.
37.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2019
, “
Thermodynamic Analysis of Reverse Brayton Cycle Based Cryocoolers for Cooling HTS Cables
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
502
, p.
012029
.
38.
Dhillon
,
A. K.
,
Bajpai
,
A.
, and
Ghosh
,
P.
,
2019
, “
The Effect of HTS Heat Rejection Conditions on Performance of Reverse Brayton Cryocooler
,”
Refrig. Sci. Technol.
,
1477
(
Part F
), pp.
7
11
.
39.
Tyagi
,
S. K.
,
Chen
,
G. M.
,
Wang
,
Q.
, and
Kaushik
,
S. C.
,
2006
, “
A New Thermoeconomic Approach and Parametric Study of an Irreversible Regenerative Brayton Refrigeration Cycle
,”
Int. J. Refrig.
,
29
(
7
), pp.
1167
1174
.
40.
Tesch
,
S.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2017
, “
Exergetic and Economic Evaluation of Safety-Related Concepts for the Regasification of LNG Integrated Into Air Separation Processes
,”
Energy
,
141
, pp.
2458
2469
.
41.
Tsatsaronis
,
G.
,
1993
, “
Thermoeconomic Analysis and Optimization of Energy Systems
,”
Prog. Energy Combust. Sci.
,
19
(
3
), pp.
227
257
.
42.
Ansarinasab
,
H.
,
Mehrpooya
,
M.
, and
Mohammadi
,
A.
,
2017
, “
Advanced Exergy and Exergoeconomic Analyses of a Hydrogen Liquefaction Plant Equipped With Mixed Refrigerant System
,”
J. Cleaner Prod.
,
144
, pp.
248
259
.
43.
Parikhani
,
T.
,
Gholizadeh
,
T.
,
Ghaebi
,
H.
,
Sattari Sadat
,
S. M.
, and
Sarabi
,
M.
,
2019
, “
Exergoeconomic Optimization of a Novel Multigeneration System Driven by Geothermal Heat Source and Liquefied Natural Gas Cold Energy Recovery
,”
J. Cleaner Prod.
,
209
, pp.
550
571
.
44.
Sayyaadi
,
H.
, and
Babaelahi
,
M.
,
2010
, “
Thermoeconomic Optimization of a Cryogenic Refrigeration Cycle for Re-Liquefaction of the LNG Boil-Off Gas
,”
Int. J. Refrig.
,
33
(
4
), pp.
1197
1207
.
45.
Ghorbani
,
B.
,
Mehrpooya
,
M.
,
Hamedi
,
M. H.
, and
Amidpour
,
M.
,
2017
, “
Exergoeconomic Analysis of Integrated Natural Gas Liquids (NGL) and Liquefied Natural Gas (LNG) Processes
,”
Appl. Therm. Eng.
,
113
, pp.
1483
1495
.
46.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2021
, “
Exergoeconomic Evaluation and Optimization of Reverse Brayton Refrigerator
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
092104
.
47.
Dhillon
,
A. K.
, and
Ghosh
,
P.
,
2021
, “
Exergetic Analysis of Reverse Brayton Cryocooler With Different Turbine Arrangements for HTS Power Cables
,”
Cryogenics (Guildf)
,
115
, p.
103262
.
48.
Dutta
,
R.
,
Ghosh
,
P.
, and
Chowdhury
,
K.
,
2011
, “
Customization and Validation of a Commercial Process Simulator for Dynamic Simulation of Helium Liquefier
,”
Energy
,
36
(
5
), pp.
3204
3214
.
49.
Aspen HYSYS® 10.0 Aspen HYSYS User Guide
.
Aspen Technology, Inc.
,
Cambridge, MA
,
2000
, http://www.aspentech.com, Accessed October 27, 2021.
50.
Brown
,
R. N.
,
2005
,
Compressor Selection and Sizing
, 3rd ed.,
Gulf Professional Pub. Co.
,
Houston, TX
.
51.
Chang
,
H. M.
,
Park
,
J. H.
,
Cha
,
K. S.
,
Lee
,
S.
, and
Choe
,
K. H.
,
2012
, “
Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas
,”
Cryocoolers
,
17
, pp.
435
442
.
52.
Streit
,
J.
, and
Razani
,
A.
,
2013
, “
Thermodynamic Optimization of Reverse Brayton Cycles of Different Configurations for Cryogenic Applications
,”
Int. J. Refrig.
,
36
(
5
), pp.
1529
1544
.
53.
Hirai
,
H.
,
Hirokawa
,
M.
,
Yoshida
,
S.
,
Sano
,
T.
, and
Ozaki
,
S.
,
2014
, “
Development of a Turbine-Compressor for 10 kW Class Neon Turbo-Brayton Refrigerator
,”
AIP Conf. Proc.
,
1573
, pp.
1236
1241
.
54.
Zhang
,
Y.
,
Li
,
Q.
,
Wu
,
J.
,
Li
,
Q.
,
Lu
,
W.
,
Xiong
,
L.
,
Liu
,
L.
, et al
,
2015
, “
Performance Analysis of a Large-Scale Helium Brayton Cryo-Refrigerator With Static Gas Bearing Turboexpander
,”
Energy Convers. Manage.
,
90
, pp.
207
217
.
55.
Chang
,
H. M.
,
Ryu
,
K. N.
, and
Baik
,
J. H.
,
2018
, “
Thermodynamic Design of Hydrogen Liquefaction Systems With Helium or Neon Brayton Refrigerator
,”
Cryogenics (Guildf)
,
91
, pp.
68
76
.
You do not currently have access to this content.