Abstract

Traditional air-conditioning systems are energy-intensive and contribute to severe environmental pollution. Despite these drawbacks, traditional air conditioners grow increasingly popular in rapidly expanding rural villas, exacerbating environmental concerns. It is very important to develop new technology that may substitute traditional air conditioners for space cooling. In this paper, we developed a nearly-zero-carbon cooling technology (NZCCT) that does not require heat pumps or air-conditioning devices as utilized in traditional indoor-cooling systems. The proposed cooling system employs solar and geothermal energy while using the naturally abundant underground soil space as energy storage. For the novel NZCCT systems, the influences of the rate and the category of circulation fluids, the initial temperature and the volume of underground cold storage, thermal conductivity and the diameter of pipes on the cooling performance in a single house have been modeled using comsol multiphysics. The simulation data have been analyzed, and the results demonstrated that the NZCCT methodology for space cooling in single houses could be realized without using heat pumps and air conditioners. A comfortable temperature could be maintained by using only clean energies. A significant amount of electricity to power heat pumps or air conditioners might be saved. The proposed technology is of great importance to reduce carbon emission from house cooling with traditional air conditioners.

References

1.
Mundaca
,
L.
,
Busch
,
H.
, and
Schwer
,
S.
,
2018
, “
‘Successful’ Low-Carbon Energy Transitions at the Community Level? An Energy Justice Perspective
,”
Appl. Energy
,
218
, pp.
292
303
.
2.
Santamouris
,
M.
,
2016
, “
Innovating to Zero the Building Sector in Europe: Minimising the Energy Consumption, Eradication of the Energy Poverty and Mitigating the Local Climate Change
,”
Sol. Energy
,
128
, pp.
61
94
.
3.
Wan
,
K. K. W.
,
Li
,
D. H. W.
,
Pan
,
W.
, and
Lam
,
J. C.
,
2012
, “
Impact of Climate Change on Building Energy Use in Different Climate Zones and Mitigation and Adaptation Implications
,”
Appl. Energy
,
97
, pp.
274
282
.
4.
Maggie
,
C.
,
Curt
,
G.
,
Stéphane
,
P.
, and
UNEP
,
2012
, “
Forging Resource Efficiency and Sustainable Development
,”
Report
.
5.
Singh
,
G.
, and
Das
,
R.
,
2020
, “
Comparative Assessment of Different Air-Conditioning Systems for Nearly/Net Zero-Energy Buildings
,”
Int. J. Energy Res.
,
44
(
5
), pp.
3526
3546
.
6.
Ayou
,
D. S.
, and
Eveloy
,
V.
,
2020
, “
Energy, Exergy and Exergoeconomic Analysis of an Ultra Low-Grade Heat-Driven Ammonia-Water Combined Absorption Power-Cooling Cycle for District Space Cooling, Sub-zero Refrigeration, Power and LNG Regasification
,”
Energy Convers. Manag.
,
213
, pp.
1
25
.
7.
Garcia
,
J.
, and
Kranzl
,
L.
,
2018
, “
Ambition Levels of Nearly Zero Energy Buildings (NZEB) Definitions: An Approach for Cross-Country Comparison
,”
Buildings
,
8
(
10
), p.
143
.
8.
Berardi
,
U.
,
2017
, “
A Cross-Country Comparison of the Building Energy Consumptions and Their Trends
,”
Resour. Conserv. Recycl.
,
123
, pp.
230
241
.
9.
Cao
,
X.
,
Dai
,
X.
, and
Liu
,
J.
,
2016
, “
Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings During the Past Decade
,”
Energy Build.
,
128
, pp.
198
213
.
10.
D’Agostino
,
D.
, and
Mazzarella
,
L.
,
2019
, “
What Is a Nearly Zero Energy Building? Overview, Implementation and Comparison of Definitions
,”
J. Build. Eng.
,
21
, pp.
200
212
.
11.
Sharan
,
P.
,
Kitz
,
K.
,
Wendt
,
D.
,
McTigue
,
J.
, and
Zhu
,
G.
,
2021
, “
Using Concentrating Solar Power to Create a Geological Thermal Energy Reservoir for Seasonal Storage and Flexible Power Plant Operation
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
010906
.
12.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011901
.
13.
Addo-Binney
,
B.
,
Besada
,
W.
, and
Agelin-Chaab
,
M.
,
2022
, “
Analysis of an Integrated Thermal Energy System for Applications in Cold Regions
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012104
.
14.
Liu
,
X.
,
Spitler
,
J. D.
,
Qu
,
M.
, and
Shi
,
L.
,
2021
, “
Recent Developments in the Design of Vertical Borehole Ground Heat Exchangers for Cost Reduction and Thermal Energy Storage
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
100905
.
15.
Droege
,
P.
,
2009
,
100% Renewable: Energy Autonomy in Action
,
Earthscan
,
London
.
16.
Toprak
,
K.
, and
Ouedraogo
,
K. E.
,
2020
, “
Effect of Storage Tanks on Solar-Powered Absorption Chiller Cooling System Performance
,”
Int. J. Energy Res.
,
44
(
6
), pp.
4366
4375
.
17.
Shao
,
X.
,
Cai
,
L.
, and
Zhang
,
X.
,
2012
, “
Life Circle Environmental Assessment on Household Air Conditioning and Its Quantification Method
,”
J. Refrig.
,
33
(
5
), pp.
10
19
.
18.
Zhang
,
S.
,
2012
,
Research on the Characteristics and Condensation Problems of Radiant Cooling and Air Conditioning
,
Jiangsu University of Science and Technology
,
Jiangsu
.
19.
Hughes
,
P. J.
,
1990
, “
Survey of Water-Source Heat Pump System Configurations in Current Practice
,”
Ashrae Trans.
,
96
, pp.
1021
1028
.
20.
Widiatmojo
,
A.
,
Chokchai
,
S.
,
Takashima
,
I.
,
Uchida
,
Y.
,
Yasukawa
,
K.
,
Chotpantarat
,
S.
, and
Charusiri
,
P.
,
2019
, “
Ground-Source Heat Pumps With Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand
,”
Energies
,
12
(
7
), p.
1274
.
21.
Mustafa Omer
,
A.
,
2008
, “
Ground-Source Heat Pumps Systems and Applications
,”
Renewable Sustainable Energy Rev.
,
12
(
2
), pp.
344
371
.
22.
Self
,
S. J.
,
Reddy
,
B. V.
, and
Rosen
,
M. A.
,
2013
, “
Geothermal Heat Pump Systems: Status Review and Comparison With Other Heating Options
,”
Appl. Energy
,
101
, pp.
341
348
.
23.
Yang
,
H.
,
Cui
,
P.
, and
Fang
,
Z.
,
2010
, “
Vertical-Borehole Ground-Coupled Heat Pumps: A Review of Models and Systems
,”
Appl. Energy
,
87
(
1
), pp.
16
27
.
24.
Ahmadi
,
M. H.
,
Ahmadi
,
M. A.
,
Sadaghiani
,
M. S.
,
Ghazvini
,
M.
,
Shahriar
,
S.
, and
Alhuyi Nazari
,
M.
,
2018
, “
Ground Source Heat Pump Carbon Emissions and Ground-Source Heat Pump Systems for Heating and Cooling of Buildings: A Review
,”
Environ. Prog. Sustain. Energy
,
37
(
4
), pp.
1241
1265
.
25.
Imanari
,
T.
,
Omori
,
T.
, and
Bogaki
,
K.
,
1999
, “
Thermal Comfort and Energy Consumption of the Radiant Ceiling Panel System.: Comparison With the Conventional All-Air System
,”
Energy Build.
,
30
(
2
), pp.
167
175
.
26.
Jia
,
H.
,
Pang
,
X.
, and
Haves
,
P.
,
2018
, “
Experimentally-Determined Characteristics of Radiant Systems for Office Buildings
,”
Appl. Energy
,
221
, pp.
41
54
.
27.
Hassan
,
M. A.
, and
Abdelaziz
,
O.
,
2020
, “
Best Practices and Recent Advances in Hydronic Radiant Cooling Systems—Part II: Simulation, Control, and Integration
,”
Energy Build.
,
224
, p.
110263
.
28.
Khan
,
Y.
,
Khare
,
V. R.
,
Mathur
,
J.
, and
Bhandari
,
M.
,
2015
, “
Performance Evaluation of Radiant Cooling System Integrated With Air System Under Different Operational Strategies
,”
Energy Build.
,
97
, pp.
118
128
.
29.
Chen
,
B.
,
2010
, “
Brief Analysis of Radiant Cooling System
,”
Power Gener. Technol.
,
31
(
2
), pp.
69
72
.
30.
Todorov
,
O.
,
Alanne
,
K.
,
Virtanen
,
M.
, and
Kosonen
,
R.
,
2020
, “
Aquifer Thermal Energy Storage (ATES) for District Heating and Cooling: A Novel Modeling Approach Applied in a Case Study of a Finnish Urban District
,”
Energies
,
13
(
10
), p.
2478
.
31.
Cui
,
J.
,
Zhao
,
J.
,
Li
,
X.
,
Qu
,
H.
, and
Han
,
M.
,
2008
, “
Theoretical Research on Underground Heat Storage Performance of Ground Coupled Heat Pump System with Seasonal Storage
,”
Taiyangneng Xuebao/Acta Energ. Sol. Sin.
,
29
(
8
), pp.
920
926
.
32.
Saeid
,
T.
,
Taherian
,
H.
,
Fung
,
A. S.
, and
Tse
,
H.
,
2012
, “
Solar-Assisted Space Heating and Small Pond-Assisted Space Cooling of a Highly Insulated Energy Efficient House
,”
J. Civ. Eng. Archit.
,
6
(
8
), p.
974
.
33.
Fathizadeh
,
M.
, and
Seim
,
D.
,
2013
, “
Design and Implementation of Geothermal Systems for Heating and Air Conditioning
,”
Lect. Notes Eng. Comput. Sci.
,
2207
(
1
), pp.
144
158
.
34.
Li
,
K.
, and
Zhao
,
G.
,
2018
, “
A Zero-Carbon Energy-Saving Underground Heating-Cooling System
.”.
35.
Zhao
,
G.
,
Li
,
K.
,
Liu
,
C.
,
Jia
,
L.
, and
Mahlalela
,
B. M.
,
2019
, “
Modeling of a Space Heating System Coupled With Underground Energy Storage
,”
Math. Geosci.
,
51
(
3
), pp.
373
400
.
36.
Churchill
,
S.
,
1977
, “
Friction Factor Equations Spans All Fluid-Flow Regimes
,”
Chem. Eng. J.
,
84
, pp.
91
92
.
37.
Jeong
,
S. Y.
,
Tso
,
C. Y.
,
Zouagui
,
M.
,
Wong
,
Y. M.
, and
Chao
,
C. Y. H.
,
2018
, “
A Numerical Study of Daytime Passive Radiative Coolers for Space Cooling in Buildings
,”
Build. Simul.
,
11
(
5
), pp.
1011
1028
.
38.
Zhou
,
Z.
,
Wu
,
S.
,
Du
,
T.
,
Chen
,
G.
,
Zhang
,
Z.
,
Zuo
,
J.
, and
He
,
Q.
,
2016
, “
The Energy-Saving Effects of Ground-Coupled Heat Pump System Integrated With Borehole Free Cooling: A Study in China
,”
Appl. Energy
,
182
, pp.
9
19
.
39.
Oruc
,
O.
,
Dincer
,
I.
, and
Javani
,
N.
,
2019
, “
Application of a Ground Source Heat Pump System With PCM-Embedded Radiant Wall Heating for Buildings
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6542
6550
.
40.
Katramiz
,
E.
,
Al Jebaei
,
H.
,
Alotaibi
,
S.
,
Chakroun
,
W.
,
Ghaddar
,
N.
, and
Ghali
,
K.
,
2020
, “
Sustainable Cooling System for Kuwait Hot Climate Combining Diurnal Radiative Cooling and Indirect Evaporative Cooling System
,”
Energy
,
213
, p.
119045
.
41.
Li
,
J.
,
Zhang
,
X.
,
Jia
,
L.
, and
Junfeng
,
W.
,
2013
, “
Analysis and Discussion on Key Technology of Radiant Cooling
,”
Chin. J. Refrig. Technol.
,
33
(
3
), pp.
16
20
.
You do not currently have access to this content.