Abstract

In view of the problems such as a plurality of dominant water flow channels formed by flushing the reservoir and inferior development effect in the water injection oilfields, reconstructing the current well pattern and providing well pattern evaluation methods are important ways to enhance oil recovery by improving the injection–production relation and increasing the swept area of water flooding. However, the reservoir engineering methods, the simulation methods, and the artificial intelligence algorithms with few objectives enable comprehensive evaluation of the well pattern. In this article, considering multiple evaluation indexes in oilfield development by the glowworm swarm optimization algorithm and niche technology, automatic well pattern optimization is carried out. The glowworm swarm optimization algorithm has the advantage of efficient global search and simpler algorithm flow, which can speed up the convergence and reduce the parameter adjustment. The niche technology can better maintain the diversity of the solutions and solve the multimodal optimization problems more efficiently, accurately, and reliably. The new method was used to optimize the well pattern of one block in a water-flooding oilfield with high water-cut in a certain oilfield. The optimal well pattern is obtained by multiple iterations to maximize the control degree of the well pattern to the sand body. The results indicate that the injection production correspondence ratio and the reserves control degree of the well pattern to the sand body are improved by 4.48% and 7.94%, respectively.

References

1.
Han
,
D.
,
Yang
,
C.
,
Zhang
,
Z.
,
Lou
,
Z.
, and
Chang
,
Y.
,
1999
, “
Recent Development of Enhanced Oil Recovery in China
,”
J. Pet. Sci. Eng.
,
22
(
1–3
), pp.
181
188
.
2.
Prasun
,
S.
, and
Wojtanowicz
,
A.
,
2018
, “
Determination and Implication of Ultimate Water Cut in Well-Spacing Design for Developed Reservoirs With Water Coning
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082902
.
3.
Dakuang
,
H.
,
2010
, “
Discussions on Concepts, Countermeasures and Technical Routes for the Redevelopment of High Water-Cut Oilfields
,”
Pet. Explor. Dev.
,
37
(
5
), pp.
583
591
.
4.
Zhong
,
H.
,
He
,
Y.
,
Yang
,
E.
,
Bi
,
Y.
, and
Yang
,
T.
,
2022
, “
Modeling of Microflow During Viscoelastic Polymer Flooding in Heterogenous Reservoirs of Daqing Oilfield
,”
J. Pet. Sci. Eng.
,
210
, p.
110091
.
5.
Wang
,
Z.
,
Xu
,
Y.
,
Khan
,
N.
,
Zhu
,
C.
, and
Gao
,
Y.
,
2023
, “
Effects of the Surfactant, Polymer, and Crude Oil Properties on the Formation and Stabilization of Oil-Based Foam Liquid Films: Insights From the Microscale
,”
J. Mol. Liq.
,
373
, p.
121194
.
6.
Fang
,
Y.
,
Yang
,
E.
,
Guo
,
S.
,
Cui
,
C.
, and
Zhou
,
C.
,
2022
, “
Study on Micro Remaining Oil Distribution of Polymer Flooding in Class-II B Oil Layer of Daqing Oilfield
,”
Energy
,
254
(
Part C
), p.
124479
.
7.
Tokunaga
,
H.
, and
Hise
,
B.
,
1966
, “
A Method to Determine Optimum Well Spacing
,”
Society of Petroleum Engineering of AIME
,
Dallas, TX
,
Nov. 17–18
, pp.
1
7
.
8.
Gurav
,
Y.
,
Dandekar
,
A.
,
Patil
,
S.
,
Fahd
,
K.
, and
Patwardhan
,
S.
,
2019
, “
Application of Design of Experiments for Well Pattern Optimization in Umiat Oil Field: A Natural Petroleum Reserve of Alaska Case Study
,”
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
,
Bali, Indonesia
,
Oct. 29–31
.
9.
Onwunalu
,
J.
, and
Durlofsky
,
L.
,
2011
, “
A New Well-Pattern-Optimization Procedure for Large-Scale Field Development
,”
SPE J.
,
16
(
3
), pp.
594
607
.
10.
Wei
,
Y.
, and
Sepehrnoori
,
K.
,
2014
, “
Optimization of Well Spacing for Bakken Tight Oil Reservoirs
,”
Unconventional Resources Technology Conference
, Paper No. URTeC-1922108.
11.
Cakici
,
D.
,
Dick
,
C.
,
Mookerjee
,
A.
, and
Stephenson
,
B.
, “
Marcellus Well Spacing Optimization—Pilot Data Integration and Dynamic Modeling Study
,”
Unconventional Resources Technology Conference
, Paper No. URTeC 1575448.
12.
Nekhaev
,
S.
,
Perevozkin
,
I.
,
Reshetnikov
,
D.
, and
Samolovov
,
D.
,
2020
, “
Method for Optimal Well Pattern Estimation for Oil Rim Fields
,”
SPE Russian Petroleum Technology Conference, Paper No. SPE-202004-MS.
13.
Dai
,
Q.
,
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
G.
,
Ma
,
X.
,
Wang
,
J.
,
Wang
,
H.
,
Yan
,
X.
,
Liu
,
P.
, and
Yang
,
Y.
,
2023
, “
An Efficient Infill Well Placement Optimization Approach for Extra-Low Permeability Reservoir
,”
ASME J. Energy Resour. Technol.
,
145
(
3
), p.
033001
.
14.
Larionov
,
A.
,
Nifantov
,
A.
,
Itkin
,
V.
, and
Alexandrov
,
V.
,
2006
, “
Methodology of Optimal Well Pattern, Location and Paths in Productive Formations During Oil and Gas Fields Development Planning
,”
2006 SPE Russian Oil and Gas Technical Conference and Exhibition
, Paper No. SPE 104326.
15.
Sun
,
L.
,
Wei
,
L.
,
Zhao
,
H.
,
Li
,
B.
, and
Li
,
Y.
,
2019
, “
Application of Highly Inclined Well to Optimizing
,”
Offshore Technology Conference Brasil
, Paper No. OTC-29942-MS.
16.
Zhang
,
Z.
,
2017
, “
Study on Rearrangement Optimization of Late Layer Series of Waterflooding in Xingnan Development Zone
,”
Master thesis
,
Northeast Petroleum University
,
Daqing, China
.
17.
Chang
,
J.
,
Zhang
,
J.
,
Li
,
X.
,
Xu
,
X.
, and
Li
,
H.
,
2016
, “
Design and Realization of Well Pattern Optimization Software
,”
International Conference on Intelligent Control and Computer Application (ICCA 2016)
,
Zhengzhou, China
,
Jan. 16–17
, pp.
221
225
.
18.
Siavashi
,
M.
,
Tehrani
,
M.
, and
Nakhaee
,
A.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052903
.
19.
Guyaguler
,
B.
, and
Horne
,
R.
,
2000
, “
Optimization of Well Placement
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
64
70
.
20.
Chang
,
J.
,
Zhang
,
J.
,
Li
,
X.
,
Xu
,
X.
, and
Li
,
H.
,
2016
, “
Design and Realization of Well Pattern Optimization Software
,”
International Conferences on Computing Advancements
,
Shenzhen, China
,
Aug. 12–15
, p.
221
.
21.
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
Y.
,
Li
,
M.
,
Yao
,
J.
,
Li
,
L.
, and
Lee
,
J.
,
2016
, “
Smart Well Pattern Optimization Using Gradient Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012901
.
22.
Raji
,
S.
,
Dehnamaki
,
A.
,
Somee
,
B.
, and
Mahdiani
,
M. R.
,
2022
, “
A New Approach in Well Placement Optimization Using Metaheuristic Algorithms
,”
J. Pet. Sci. Eng.
,
215
(
Part A
), p.
110640
.
23.
Moussa
,
T.
,
Mahmoud
,
M.
,
Mokheimer
,
E. M. A.
,
Habib
,
M. A.
, and
Elkatatny
,
S.
,
2019
, “
Well-Placement Optimization in Heavy Oil Reservoirs Using a Novel Method of In Situ Steam Generation
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032906
.
24.
Owoyele
,
O.
,
Pal
,
P.
, and
Vidal Torreira
,
A.
,
2021
, “
An Automated Machine Learning-Genetic Algorithm Framework With Active Learning for Design Optimization
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082305
.
25.
Naderi
,
F.
,
Siavashi
,
M.
, and
Nakhaee
,
A.
,
2021
, “
A Novel Streamline-Based Objective Function for Well Placement Optimization in Waterfloods
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102104
.
26.
Chen
,
H.
,
Feng
,
Q.
,
Zhang
,
X.
,
Wang
,
S.
,
Zhou
,
W.
, and
Liu
,
F.
,
2019
, “
Well Placement Optimization With Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012902
.
27.
Khasanov
,
M.
,
Ushmaev
,
O.
,
Echeverria Ciaurri
,
S.
, and
Semenikhin
,
A.
,
2014
, “
Application of Mathematical Optimization Techniques for Well Pattern Selection
,”
SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition
, Paper No. SPE-171163-MS.
28.
Zhou
,
Z.
,
Wang
,
J.
, and
Zhou
,
J.
,
2017
, “
Research on the Overall Optimization Method of Well Pattern in Water Drive Reservoirs
,”
J. Petrol. Explor. Prod. Technol.
,
2017
(
7
), pp.
465
470
.
29.
Bello
,
O.
,
Awofodu
,
D.
,
Oppelt
,
J.
,
Ganzer
,
L.
, and
Holzmann
,
J.
,
2017
, “
Selective Perforation and Design of Multi-Pattern Infill Wells in Field Development Planning and Optimization Under Geological Uncertainty
,”
Offshore Technology Conference
, Paper No. OTC-27553-MS.
30.
Zhou
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2016
, “
Improving Steam-Assisted Gravity Drainage Performance in Oil Sands With a Top Water Zone Using Polymer Injection and the Fishbone Well Pattern
,”
Fuel
,
184
(
15
), pp.
449
465
.
31.
Jadhawar
,
P.
, and
Sarma
,
H.
,
2012
, “
Effect of Well Pattern and Injection Well Type on the CO2-Assisted Gravity Drainage Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
98–99
, pp.
83
94.
.
32.
Onwunalu
,
J.
, and
Durlofsky
,
L.
,
2011
, “
A New Well-Pattern-Optimization Procedure for Large-Scale Field Development
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 4–7
, SPE Journal, pp.
594
607
.
33.
Li
,
H.
, and
Zhang
,
C.
,
2017
, “
Research of Local Automatic Routing Well Pattern Algorithm on Reservoir Properties and Geometric Constraints
,”
Comput. Digit. Eng.
,
45
(
9
), pp.
1720
1723
.
34.
Volz
,
R.
,
Burn
,
K.
,
Litvak
,
M.
,
Thakur
,
S.
, and
Stvortsov
,
S.
,
2008
, “
Field Development Optimization of Siberian Giant Oil Field Under Uncertainties
,”
SPE Russian Oil & Gas Technical Conference Exhibition
, Paper No. SPE 116831.
35.
Ma
,
J.
,
Di
,
P.
,
Shen
,
Y.
,
Liang
,
Y.
,
Zhang
,
H.
,
Huang
,
A.
, and
Huang
,
Z.
,
2018
, “
An Intelligent Method for Deep-Water Injection-Production Well Pattern Design
,”
Proceedings of the Twenty-Eighth International Ocean and Polar Engineering Conference
,
Sapporo, Japan
,
June 10–15
, pp.
17
23
.
36.
Siavashi
,
M.
, and
Yazdani
,
M.
,
2018
, “
A Comparative Study of Genetic and Particle Swarm Optimization Algorithms and Their Hybrid Method in Water Flooding Optimization
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102903
.
37.
El Imrani
,
A.
,
Bouroumi
,
A.
,
Zine El Abidine
,
H.
,
Limouri
,
M.
, and
Essaı¨d
,
A.
,
2000
, “
A Fuzzy Clustering-Based Niching Approach to Multimodal Function Optimization
,”
J. Cogn. Syst. Res.
,
1
(
2
), pp.
119
133
.
38.
Zhu
,
S.
, and
Liu
,
B.
,
1999
, “
A New Method for Determining Reasonable Well Density and Limit Well Density in Low Permeability Reservoirs
,”
Spec Oil Gas Reservoirs
,
6
(
1
), pp.
14
17
.
39.
Krishnanand
,
K.
, and
Ghose
,
D.
,
2005
, “
Detection of Multiple Source Locations Using a Glowworm Metaphor With Applications to Collective Robotics
,”
Proceedings of IEEE Swarm Intelligence Symposium
,
Pasadena, CA
,
June 8–10
, pp.
84
91
.
40.
Zhang
,
Y.
, and
Liu
,
C.
,
2020
, “
Matlab Programming of Glowworm Swarm Optimization Algorithm
,”
Softw. Guide
,
19
(
9
), pp.
132
135
.
41.
Huang
,
Z.
, and
Zhou
,
Y.
,
2012
, “
Adaptive Glowworm Swarm Optimization Algorithm With Changing Step for Optimizing Multimodal Functions
,”
Comput. Eng. Appl.
,
48
(
8
), pp.
43
47
.
42.
Zainal
,
N.
,
Zain
,
A.
,
Radzi
,
N.
, and
Othman
,
M.
,
2014
, “
Glowworm Swarm Optimization (GSO) for Optimization of Machining Parameters
,”
J. Intell. Manuf.
,
27
(
4
), pp.
797
804
.
43.
Krishnanand
,
K.
, and
Ghose
,
D.
,
2008
, “
Glowworm Swarm Optimization for Simultaneous Capture of Multiple Local Optima of Multimodal Functions
,”
Swarm Intell.
,
3
(
2
), pp.
87
124
.
44.
Zhang
,
J.
,
Hu
,
C.
,
Deng
,
B.
,
Li
,
X.
,
He
,
D.
,
Li
,
H.
, and
Chang
,
J.
,
2015
, “
The Application of Computational Geometry Algorithms in Discriminating Direct Injection Production Connections
,”
International Conference on Materials Engineering and Information Technology Applications (MEITA 2015)
,
Guilin, China
,
Aug. 30–31
, pp.
635
642
.
45.
Zhang
,
J.
,
Li
,
H.
,
Li
,
X.
, and
Jia
,
D.
,
2019
, “
Fine Evaluation Method of Dynamic Water-Flooding Reserves Control Degree of Mature Oilfields
,”
IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)
,
Dalian, China
,
Mar. 29–31
, pp.
127
131
.
You do not currently have access to this content.