Abstract

Dimethyl ether is a new-generation alternative fuel to mitigate cold-start issues in compression ignition engines. It has a higher cetane number and offers superior spray atomization and fuel evaporation characteristics. This simulation study compares dimethyl ether and baseline diesel sprays and their evaporation characteristics in a constant volume spray chamber. Fuel properties greatly influence spray atomization and evaporation characteristics. This study is based on the Eulerian–Lagrangian approach adopted in the Reynolds-averaged Navier–Stokes framework. The liquid spray penetration obtained by simulation matched well with the experimental results of dimethyl ether and baseline diesel. Spray model constants were tuned for diesel and dimethyl ether separately, as the fuel properties of both test fuels are completely different. These tuned models were used to simulate dimethyl ether and diesel sprays at fixed fuel injection timings and ambient conditions. Results showed a lower spray penetration length for dimethyl ether than baseline diesel because of the flash boiling of dimethyl ether. Smaller diameter droplets formed due to dimethyl ether’s lower viscosity, density, surface tension, and higher evaporation rate. The reduction in Sauter mean diameter was quite sharp after the start of injection for the dimethyl ether. Diesel spray showed retarded spray atomization and evaporation characteristics compared to dimethyl ether. The vapor penetration length of both fuels was almost the same; however, the vapor mass fraction was higher for dimethyl ether than baseline diesel. Dimethyl ether spray exhibited superior spray atomization and improved evaporation of fuel droplets.

References

1.
Zare
,
A.
,
Bodisco
,
T. A.
,
Nabi
,
M. N.
,
Hossain
,
F. M.
,
Ristovski
,
Z. D.
, and
Brown
,
R. J.
,
2018
, “
A Comparative Investigation Into Cold-Start and Hot-Start Operation of Diesel Engine Performance With Oxygenated Fuels During Transient and Steady-State Operation
,”
Fuel
,
228
, pp.
390
404
.
2.
Arias
,
S.
,
Botero
,
M. L.
,
Molina
,
F.
, and
Agudelo
,
J. R.
,
2022
, “
Pentanol/Diesel Fuel Blends: Assessment of Inhalation Cancer Risk and Ozone Formation Potential From Carbonyl Emissions Emitted by an Automotive Diesel Engine
,”
Fuel
,
321
, p.
124054
.
3.
Hariharan
,
D.
,
Rahimi Boldaji
,
M.
,
Yan
,
Z.
,
Gainey
,
B.
, and
Lawler
,
B.
,
2021
, “
Exploring the Effects of Piston Bowl Geometry and Injector Included Angle on Dual-Fuel and Single-Fuel RCCI
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111013
.
4.
Malaguti
,
S.
,
Fontanesi
,
S.
,
Cantore
,
G.
,
Montanaro
,
A.
, and
Allocca
,
L.
,
2013
, “
Modelling of Primary Breakup Process of a Gasoline Direct Engine Multi-Hole Spray
,”
At. Sprays
,
23
(
10
), pp.
861
888
.
5.
Mehrizi
,
A. A.
,
Karimi-maleh
,
H.
,
Naddafi
,
M.
,
Karaman
,
O.
,
Karimi
,
F.
,
Karaman
,
C.
, and
Cheng
,
C. K.
,
2022
, “
Evaporation Characteristics of Nano Fuel Droplets: A Review
,”
Fuel
,
319
, p.
123731
.
6.
Dernotte
,
J.
,
Hespel
,
C.
,
Houille
,
S.
,
Foucher
,
F.
, and
Mounaim-Rousselle
,
C.
,
2012
, “
Influence of Fuel Properties on the Diesel Injection Process in Non-Vaporizing Conditions
,”
At. Sprays
,
22
(
6
), pp.
461
492
.
7.
Choi
,
J.
,
Yi
,
T.
, and
Kim
,
H.
,
2021
, “
Combustion of a Dilute Carbon Black/Ethanol Nano Fuel Droplet in Elevated Pressure Conditions
,”
Fuel
,
292
, pp.
120376
.
8.
Myong
,
K.-J.
,
Suzuki
,
H.
,
Senda
,
J.
, and
Fujimoto
,
H.
,
2008
, “
Spray Inner Structure of Evaporating Multi-Component Fuel
,”
Fuel
,
87
(
2
), pp.
202
210
.
9.
Putrasari
,
Y.
, and
Lim
,
O.
,
2022
, “
Dimethyl Ether as the Next Generation Fuel to Control Nitrogen Oxides and Particulate Matter Emissions From Internal Combustion Engines: A Review
,”
ACS Omega
,
7
(
1
), pp.
32
37
.
10.
Hua
,
Y.
,
2023
, “
Ethers and Esters as Alternative Fuels for Internal Combustion Engine: A Review
,”
Int. J. Engine Res.
,
24
(
1
), pp.
178
216
.
11.
Ainsalo
,
A.
,
Sallinen
,
R.
,
Kaario
,
O.
, and
Larmi
,
M.
,
2019
, “
Optical Investigation of Spray Characteristics for Light Fuel Oil, Kerosene, Hexane, Methanol, and Propane
,”
At. Sprays
,
29
(
6
), pp.
521
544
.
12.
Yu
,
J.
,
Zhang
,
Y.
,
Jiang
,
G.
, and
Kui
,
Q.
,
2010
, “
An Experimental Study on Steady Flash Boiling Spray Characteristics of DME/Diesel Blended Fuel
,” SAE Technical Paper.
13.
Kim
,
H. J.
,
Park
,
S. H.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
Atomization and Evaporation Characteristics of Biodiesel and Dimethyl Ether Compared to Diesel Fuel in a High-Pressure Injection System
,”
Energy Fuels
,
23
(
3
), pp.
1734
1742
.
14.
Kim
,
M. Y.
,
Bang
,
S. H.
, and
Lee
,
C. S.
,
2007
, “
Experimental Investigation of Spray and Combustion Characteristics of Dimethyl Ether in a Common-Rail Diesel Engine
,”
Energy Fuels
,
21
(
2
), pp.
793
800
.
15.
Mitsugi
,
Y.
,
Wakabayashi
,
D.
,
Tanaka
,
K.
, and
Konno
,
M.
,
2015
, “
High-Speed Observation and Modelling of Dimethyl Ether Spray Combustion at Engine-Like Conditions
,”
SAE Int. J. Engines
,
9
(
1
), pp.
210
221
.
16.
Spiekermann
,
P.
,
Jerzembeck
,
S.
,
Felsch
,
C.
,
Vogel
,
S.
,
Gauding
,
M.
, and
Peters
,
N.
,
2009
, “
Experimental Data and Numerical Simulation of Common-Rail Ethanol Sprays at Diesel Engine-Like Conditions
,”
At. Sprays
,
19
(
4
), pp.
357
386
.
17.
Safiullah
,
M. R.
,
Nishida
,
K.
, and
Ogata
,
Y.
,
2020
, “
Experimental and Computational Study of Diesel Spray Under Non-Evaporating and Evaporating Conditions—Effects of Nozzle Hole Diameter and Injection Pressure
,”
At. Sprays
,
30
(
9
), pp.
627
649
.
18.
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2008
, “
Numerical and Experimental Study on the Comparison Between Diesel and Dimethyl Ether (DME) Spray Behaviours According to Combustion Chamber Shape
,”
Energy Fuels
,
22
(
4
), pp.
2851
2860
.
19.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032204
.
20.
Sou
,
A.
,
Biçer
,
B.
, and
Tomiyama
,
A.
,
2014
, “
Numerical Simulation of Incipient Cavitation Flow in a Nozzle of Fuel Injector
,”
Comput. Fluids
,
103
, pp.
42
48
.
21.
Aleiferis
,
P. G.
,
Ashrafi-Nik
,
M.
,
Ladommatos
,
N.
,
Dober
,
G.
, and
Karimi
,
K.
,
2014
, “
A Study of Droplet Collision Modelling for Spray Formation and Mixing With a Two-Row Group-Hole Injection Nozzle for Diesel Engines
,”
At. Sprays
,
24
(
12
), pp.
1089
1135
.
22.
Naruemon
,
I.
,
Liu
,
L.
,
Liu
,
D.
,
Ma
,
X.
, and
Nishida
,
K.
,
2020
, “
An Analysis on the Effects of the Fuel Injection Rate Shape of the Diesel Spray Mixing Process Using a Numerical Simulation
,”
Appl. Sci.
,
10
(
14
), pp.
4983
.
23.
Rostampour
,
A.
,
Shojaeefard
,
M. H.
, and
Molaeimanesh
,
G. R.
,
2022
, “
A Comprehensive Investigation of RANS and LES Turbulence Models for Diesel Spray Modelling Via Experimental Diesel Schlieren Imaging
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
236
(
15
), pp.
8321
8337
.
24.
Park
,
Y.
,
Hwang
,
J.
,
Bae
,
C.
,
Kim
,
K.
,
Lee
,
J.
, and
Pyo
,
S.
,
2015
, “
Effects of Diesel Fuel Temperature on Fuel Flow and Spray Characteristics
,”
Fuel
,
162
, pp.
1
7
.
25.
Cung
,
K. D.
,
2015
, “
Spray and Combustion Characteristics of Dimethyl Ether Under Various Ambient Conditions: An Experimental and Modelling Study
,” PhD diss
.
,
Michigan Technological University
.
26.
Jena
,
A.
,
Singh
,
H.
, and
Agarwal
,
A. K.
,
2021
, “
Effect of Swirl Ratio on Charge Convection, Temperature Stratification, and Combustion in Gasoline Compression Ignition Engine
,”
Phys. Fluids
,
33
(
8
), pp.
085113
.
27.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
Large Eddy Simulation of Fuel-Spray Under Non-Reacting IC Engine Conditions
,”
At. Sprays
,
23
(
10
), pp.
925
955
.
28.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
29.
Banerjee
,
S.
, and
Rutland
,
C. J.
,
2015
, “
Study on Spray-Induced Turbulence Using Large Eddy Simulations
,”
At. Sprays
,
25
(
4
), pp.
285
316
.
30.
Kalwar
,
A.
,
Chintagunti
,
S.
, and
Agarwal
,
A. K.
,
2021
, “
Gasohol Sprays Simulations of a Multi-Hole GDI Injector in Engine-Like Conditions
,” SAE Technical Paper.
31.
Tripathi
,
G.
,
Sharma
,
P.
,
Dhar
,
A.
, and
Sadiki
,
A.
,
2019
, “
Computational Investigation of Diesel Injection Strategies in Hydrogen-Diesel Dual Fuel Engine
,”
Sustain. Energy Technol. Assess.
,
36
, p.
100543
.
32.
Hoang
,
A. T.
,
2019
, “
Experimental Study on Spray and Emission Characteristics of a Diesel Engine Fueled With Preheated Bio-Oils and Diesel Fuel
,”
Energy
,
171
, pp.
795
808
.
33.
Reitz
,
R. D.
,
1982
, “
Mechanism of Atomization of a Liquid Jet
,”
Phys. Fluids
,
25
(
10
), p.
1730
.
34.
Liu
,
Z.
,
Hwang
,
S. S.
, and
Reitz
,
R. D.
,
1996
, “
Breakup Mechanisms and Drag Coefficients of High-Speed Vaporizing Liquid Drops
,”
At. Sprays
,
6
(
3
), pp.
353
376
.
35.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1983
, “The Numerical Computation of Turbulent Flows,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding
,
S. V.
Patankar
,
A.
Pollard
,
A. K.
Singhal
, and
S. P.
Vanka
, eds.,
Paragamon Press
,
New York
, pp.
96
116
.
36.
Menter
,
F.
,
1993
, “
Zonal Two-Equation k–w Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Reston, VA
,
July 6
,
p. 2906
.
37.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2016
, “
Effects of Fuel Physical Properties on Direct Injection Spray and Ignition Behaviour
,”
Fuel
,
180
, pp.
481
496
.
38.
Suh
,
H. K.
, and
Lee
,
C. S.
,
2008
, “
Experimental and Analytical Study on the Spray Characteristics of Dimethyl Ether (DME) and Diesel Fuels Within a Common-Rail Injection System in a Diesel Engine
,”
Fuel
,
87
(
6
), pp.
925
932
.
39.
Ait Saada
,
M.
,
Chikh
,
S.
, and
Tadrist
,
L.
,
2010
, “
Numerical Investigation of Heat and Mass Transfer of an Evaporating Sessile Drop on a Horizontal Surface
,”
Phys. Fluids
,
22
(
11
), p.
112115
.
40.
Zou
,
S.
,
Zhou
,
D.
, and
Yang
,
S.
,
2020
, “
Effects of Evaporation and Fuel Properties on Liquid Jets in Supersonic Crossflow: A Computational Study Using a Compressible Eulerian-Lagrangian Solver
,”
At. Sprays
,
30
(
9
), pp.
675
696
.
41.
Kobashi
,
Y.
,
Yokogawa
,
K.
,
Miyabe
,
H.
,
Hase
,
R.
, and
Kato
,
S.
,
2018
, “
Flow Fields and Turbulent Characteristics in Non-evaporating Diesel Sprays
,”
At. Sprays
,
28
(
8
), pp.
735
749
.
You do not currently have access to this content.