Abstract

Data-driven models have risen in popularity during the past 10 years, which increase the effectiveness and durability of systems without necessitating a lot of human involvement. Despite all of their advantages, they remain the limitations in terms of model interpretation, data selection, and model evaluation. Sensitivity analysis (SA) is a powerful tool to decipher behaviors of data-driven models to analyze the correlations among inputs and outputs of models, and quantify the severity of inputs’ influence on outputs to effectively interpret these black-box models. Feature selection (FS) is a preprocessing approach used in data-driven modeling to select the crucial parameters as inputs fed to models. For the most of the existing works, the FS is well used to select inputs through the analysis on the drilling data correlations, while SA is seldom employed for data-driven model evaluation and interpretation in drilling applications. Data-driven rate of penetration (ROP) models have consistently outperformed many conventional ROP models, most likely as a result of their strong data analysis capabilities, capacity to learn from data in order to recognize data patterns, and effective policies for making logical decisions automatically. A data-driven ROP model was developed from a benchmarking field drilling dataset in this work. Following the ROP modelling, sensitivity analysis methods were employed to identify the input variables that had the greatest influence on ROP estimations. The FS techniques and the sensitivity analysis were combined during the data preprocessing to identify the most important aspects for modelling. The outcomes demonstrate that using the robust sensitivity analysis techniques to overcome the limits of machine learning models allows for the best interpretation and understanding of the produced data-driven models.

References

1.
Zhang
,
P.
,
2019
, “
A Novel Feature Selection Method Based on Global Sensitivity Analysis With Application in Machine Learning-Based Prediction Model
,”
Appl. Soft. Comput.
,
85
, p.
105859
.
2.
Saltelli
,
A.
,
2002
, “
Sensitivity Analysis for Importance Assessment
,”
Risk Anal.
,
22
(
3
), pp.
1
12
.
3.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
, pp.
1157
1182
.
4.
Loucks
,
D. P.
,
van Beek
,
E.
,
Stedinger
,
J. R.
, and
van Beek
,
E.
,
2017
,
Water Resource Systems Planning and Management:An Introduction to Methods, Models, and Applications
,
Springer Cham
.
5.
Geffray
,
C.
,
Gerschenfeld
,
A.
,
Kudinov
,
P.
,
Mickus
,
I.
,
Jeltsov
,
M.
,
Kööp
,
K.
,
Grishchenko
,
D.
, and
Pointer
,
D.
,
2018
, “Verification and Validation and Uncertainty Quantification,”
Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
,
F.
Roelofs
, ed.,
Woodhead Publishing
, pp.
383
405
.
6.
Pannell
,
D. J.
,
1997
, “
Sensitivity Analysis of Normative Economic Models: Theoretical Framework and Practical Strategies
,”
Agric. Econ.
,
16
(
2
), pp.
139
152
.
7.
Kiparissides
,
A.
,
Kucherenko
,
S. S.
,
Mantalaris
,
A.
, and
Pistikopoulos
,
E. N.
,
2009
, “
Global Sensitivity Analysis Challenges in Biological Systems Modeling
,”
Ind. Eng. Chem. Res.
,
48
(
15
), pp.
7168
7180
.
8.
Morio
,
J.
,
2011
, “
Global and Local Sensitivity Analysis Methods for a Physical System
,”
Eur. J. Phys.
,
32
(
6
), p.
1577
.
9.
Hamby
,
D. M.
,
1997
, “
A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models
,”
Environ. Monit. Assess.
,
32
, pp.
135
154
.
10.
Helton
,
J. C.
,
1993
, “
Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal
,”
Reliab. Eng. Syst. Saf.
,
42
(
2–3
), pp.
327
367
.
11.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
,
52
(
1
), pp.
1
17
.
12.
Zhang
,
X. Y.
,
Trame
,
M. N.
,
Lesko
,
L. J.
, and
Schmidt
,
S.
,
2015
, “
Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models
,”
CPT: Pharmacometrics Syst. Pharmacol.
,
4
(
2
), pp.
69
79
.
13.
Pianosi
,
F.
,
Beven
,
K.
,
Freer
,
J.
,
Hall
,
J. W.
,
Rougier
,
J.
,
Stephenson
,
D. B.
, and
Wagener
,
T.
,
2016
, “
Sensitivity Analysis of Environmental Models: A Systematic Review With Practical Workflow
,”
Environm. Modell. Softw.
,
79
, pp.
214
232
.
14.
Sobol
,
I. M.
,
1993
, “
Sensitivity Analysis for Non-linear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
1–3
), pp.
407
414
.
15.
Sobol
,
I. M
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
16.
Morris
,
M. D
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.
17.
Ikonen
,
T.
,
2016
, “
Comparison of Global Sensitivity Analysis Methods—Application to Fuel Behavior Modeling
,”
Nucl. Eng. Des.
,
297
, pp.
72
80
.
18.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Wiley Online Library
.
19.
Campolongo
,
F.
,
Saltelli
,
A.
, and
Cariboni
,
J.
,
2011
, “
From Screening to Quantitative Sensitivity Analysis. a Unified Approach
,”
Comput. Phys. Commun.
,
182
(
4
), pp.
978
988
.
20.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
.
21.
Iwanaga
,
T
,
Usher
,
W
, and
Herman
,
J
,
2022
, “
Toward SALib 2.0: Advancing the Accessibility and Interpretability of Global Sensitivity Analyses
,”
Socio-Environm. Syst. Modell.
,
4
, p.
18155
.
22.
Herman
,
J
, and
Usher
,
W
,
2017
, “
SALib: An Open-Source Python Library for Sensitivity Analysis
,”
J. Open Sourc. Softw.
,
2
(
9
), p.
97
.
23.
Ishigami
,
T.
, and
Homma
,
T.
,
1990
, “
An Importance Quantification Technique in Uncertainty Analysis for Computer Models
,”
First International Symposium on Uncertainty Modeling and Analysis
,
College Park, MD
,
Dec. 3–5
, pp.
398
403
.
24.
Chandrashekar
,
G.
, and
Sahin
,
F.
,
2014
, “
A Survey on Feature Selection Methods
,”
Comput. Electr. Eng.
,
40
(
1
), pp.
16
28
.
25.
El Aboudi
,
N.
, and
Benhlima
,
L.
,
2016
, “
Review on Wrapper Feature Selection Approaches
,”
International Conference on Engineering MIS (ICEMIS)
,
Agadir, Morocco
,
Sept. 22–24
, pp.
1
5
.
26.
Kohavi
,
R.
, and
John
,
G. H.
,
1997
, “
Wrappers for Feature Subset Selection
,”
Artif. Intell.
,
97
(
1–2
), pp.
273
324
.
27.
Bollen
,
K. A.
,
1984
, “
Multiple Indicators: Internal Consistency or No Necessary Relationship?
,”
Qual. Quant.
,
18
(
4
), pp.
377
385
.
28.
Duncan
,
T. E.
,
1970
, “
On the Calculation of Mutual Information
,”
SIAM J. Appl. Math.
,
19
(
1
), pp.
215
220
.
29.
Tunkiel
,
A.
,
Sui
,
D.
, and
Wiktorski
,
T.
,
2020
, “
Reference Dataset for Rate of Penetration Benchmarking
,”
J. Petrol. Sci. Eng.
,
196
, p.
108069
.
30.
Tunkiel
,
A.
,
Sui
,
D.
, and
Wiktorski
,
T.
,
2021
, “
Impact of Data Pre-processing Techniques on Recurrent Neural Network Performance in Context of Real-Time Drilling Logs in an Automated Prediction Framework
,”
J. Petrol. Sci. Eng.
,
208
, p.
109760
.
31.
Encinas
,
M.
,
Tunkiel
,
A.
, and
Sui
,
D.
,
2021
, “
Downhole Data Correction for Data-Driven Rate of Penetration Prediction Modeling
,”
J. Petrol. Sci. Eng.
,
210
, p.
109904
.
32.
Tariq
,
S
,
2022
, “Sensitivity Analysis for Drilling Data Using Machine Learning Models,” Master Thesis,
University of Stavanger
.
33.
Breiman
,
L
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
34.
Friedman
,
Jerome H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Statist.
,
29
(
5
), pp.
1189
1232
.
35.
Altman
,
N. S.
,
1992
, “
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
,”
Am. Stat.
,
46
(
3
), pp.
175
185
.
36.
Hegde
,
C.
,
Soares
,
C.
, and
Gray
,
K.
,
2019
, “
Rate of Penetration (ROP) Modeling Using Hybrid Models: Deterministic and Machine Learning
,”
Unconventional Resources Technology Conference
,
Houston, TX
,
July
.
37.
Esmaeli
,
A.
,
Elahifar
,
B.
,
Fruhwirth
,
R.
, and
Thonhauser
,
G.
,
2012
, “
ROP Modeling Using Neural Network and Drill String Vibration Data
,” Society of Petroleum Engineers, Paper No. SPE 163330.
38.
Soares
,
C.
, and
Gray
,
K.
,
2020
, “
Real-Time Predictive Capabilities of Analytical and Machine Learning Rate of Penetration (ROP) Models
,”
J. Petrol. Sci. Eng.
,
172
, pp.
934
959
.
You do not currently have access to this content.