Abstract

The invasion of aquifers into fractured gas reservoirs with edge water aquifers leads to rapid water production in gas wells, which reduces their gas production. Natural fractures accelerate this process. Traditional reservoir engineering methods cannot accurately describe the water influx, and it is difficult to quantitatively characterize the influence of aquifer energy and fracture development on production, which prevents aquifer intrusion from being effectively addressed. We divided the water influx of edge water aquifers in fractured gas reservoirs into three patterns: tongue-like intrusion in the matrix, tongue-like intrusion in fractures, and channel intrusion in fractures. Detailed numerical modeling of the water influx was performed using an embedded discrete fracture model (EDFM) to predict gas production. Because the strength of the aquifer and the conductivity of natural fractures have different effects on water influx, the effects of aquifers and natural fractures on the gas production of wells under the three water influx modes were studied. The results show that tongue-like intrusions lead to a stronger initial gas production of gas wells, which then become weaker after the wells are flooded, and the intrusions such as channeling in fractures cause the gas well to be flooded quickly. However, not all water influxes are unfavorable for gas production. Aquifers with water energy similar to gas formation and natural fractures with weak conductivity can improve the production of gas wells.

References

1.
Fryklund
,
B.
, and
Stark
,
P.
,
2020
, “
Super Basins—New Paradigm for Oil and Gas Supply
,”
Am. Assoc. Pet. Geol. Bull.
,
104
(
12
), pp.
2507
2519
.
2.
Dai
,
J.
,
Ni
,
Y.
,
Liu
,
Q.
,
Wu
,
X.
,
Gong
,
D.
,
Hong
,
F.
,
Zhang
,
Y.
,
Liao
,
F.
,
Yan
,
Z.
, and
Li
,
H.
,
2021
, “
Sichuan Super Gas Basin in Southwest China
,”
Pet. Explor. Dev.
,
48
(
6
), pp.
1251
1259
.
3.
Hu
,
Y.
,
Peng
,
X.
,
Li
,
Q.
,
Li
,
L.
, and
Hu
,
D.
,
2020
, “
Progress and Development Direction of Technologies for Deep Marine Carbonate Gas Reservoirs in the Sichuan Basin
,”
Nat. Gas Ind. B
,
7
(
2
), pp.
149
159
.
4.
Xia
,
C.
,
Liu
,
L.
,
Zhang
,
L.
, and
Peng
,
X.
,
2016
, “
Optimization Techniques for the Secondary Development of Old Gas Fields in the Sichuan Basin and Their Application
,”
Nat. Gas Ind. B
,
3
(
6
), pp.
595
606
.
5.
Amirsardari
,
M.
,
Rajabi
,
A.
,
Danaei
,
M.
, and
Rashidi
,
F.
,
2019
, “
Numerical Investigation for Determination of Aquifer Properties in Newly Developed Reservoirs: A Case Study in a Carbonate Reservoir
,”
J. Pet. Sci. Eng.
,
177
, pp.
331
360
.
6.
Kou
,
Z.
,
Wang
,
T.
,
Chen
,
Z.
, and
Jiang
,
J.
,
2021
, “
A Fast and Reliable Methodology to Evaluate Maximum CO2 Storage Capacity of Depleted Coal Seams: A Case Study
,”
Energy
,
231
, p.
120992
.
7.
Lee
,
T. H.
,
Jang
,
Y. H.
,
Park
,
H. M.
,
Lee
,
K. S.
, and
Sung
,
W. M.
,
2011
, “
Investigation of Water BT Phenomenon in the Fractured Basement Reservoir Contacted With Bottom Water Aquifer
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
, SPE-146874-MS.
8.
Mahmud
,
H. B.
,
Mahmud
,
W. M.
, and
Arumugam
,
S.
,
2020
, “
Numerical Investigation of Optimum Ions Concentration in Low Salinity Waterflooding
,”
Adv. Geo-Energy Res.
,
4
(
3
), pp.
271
285
.
9.
Yang
,
J.
,
Li
,
C.
,
Geng
,
S.
,
He
,
S.
, and
Li
,
K.
,
2020
, “
Microscopic Flow Mechanism of Water Invasion in Ideal Fracture Models
,”
Energy Source Part A
, pp.
1
13
.
10.
Lies
,
H. K.
,
2000
, “
Aquifer Influx Modelling for Gas Reservoirs
,”
Canadian International Petroleum Conference
, PETSOC-2000-2029.
11.
Zhang
,
C.
,
Wang
,
P.
, and
Song
,
G.
,
2019
, “
Study on Enhanced Oil Recovery by Multi-Component Foam Flooding
,”
J. Pet. Sci. Eng.
,
177
, pp.
181
187
.
12.
Shimada
,
M.
, and
Yildiz
,
T.
,
2009
, “
Predicting Water Influx From Common Aquifers
,”
EUROPEC/EAGE Conference and Exhibition
, SPE-120897-MS.
13.
Yu
,
Q.
,
Hu
,
X.
,
Liu
,
P.
,
Jia
,
Y.
, and
Li
,
Y.
,
2019
, “
Researches on Calculation Methods of Aquifer Influx for Gas Reservoirs With Aquifer Support
,”
J. Pet. Sci. Eng.
,
177
, pp.
889
898
.
14.
Zhang
,
A.
,
Fan
,
Z.
,
Zhao
,
L.
,
Wang
,
J.
, and
Song
,
H.
,
2020
, “
A New Methodology of Production Performance Prediction for Strong Edge-Water Reservoir
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083005
.
15.
Espinola-Gonzalez
,
O.
,
Guzman-Arevalo
,
J. D.
,
Ramirez-Cuacenetl
,
J. R.
,
Rocha-Carrascal
,
M.
, and
Mehranfar
,
R.
,
2016
, “
Evaluation of Exploitation Strategies for Gas Reservoirs With Water Influx in the Miocene Formation of the Veracruz Basin Through Numerical Simulation to Optimize the Recovery Factor
,”
SPE Trinidad and Tobago Section Energy Resources Conference
, SPE-180777-MS.
16.
Han
,
X.
,
Tan
,
X.
,
Li
,
X.
,
Pang
,
Y.
, and
Zhang
,
L.
,
2021
, “
Water Invasion Performance of Complex Fracture-Vuggy Gas Reservoirs Based on Classification Modeling
,”
Adv. Geo-Energy Res.
,
5
(
2
), pp.
222
232
.
17.
Hawez
,
H. K.
,
Sanaee
,
R.
, and
Faisal
,
N. H.
,
2021
, “
A Critical Review on Coupled Geomechanics and Fluid Flow in Naturally Fractured Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
95
, p.
104150
.
18.
Zhang
,
C.
,
Wang
,
P.
,
Song
,
G.
,
Qu
,
G.
, and
Liu
,
J.
,
2018
, “
Optimization and Evaluation of Binary Composite Foam System With Low Interfacial Tension in Low Permeability Fractured Reservoir With High Salinity
,”
J. Pet. Sci. Eng.
,
160
, pp.
247
257
.
19.
Lie
,
K.-A.
, and
Møyner
,
O.
,
2021
,
Advanced Modeling With the MATLAB Reservoir Simulation Toolbox
,
Cambridge University Press
,
Cambridge
.
20.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
Soc. Pet. Eng. J.
,
3
(
03
), pp.
245
255
.
21.
Wang
,
L.
,
Chen
,
W.
, and
Vuik
,
C.
,
2022
, “
Hybrid-Dimensional Modeling for Fluid Flow in Heterogeneous Porous Media Using Dual Fracture-Pore Model With Flux Interaction of Fracture–Cavity Network
,”
J. Nat. Gas Sci. Eng.
,
100
, p.
104450
.
22.
Zhang
,
D.
,
Zhang
,
L.
,
Huiying
,
T. A. N. G.
, and
Yulong
,
Z. H. A. O.
,
2022
, “
Fully Coupled Fluid–Solid Productivity Numerical Simulation of Multistage Fractured Horizontal Well in Tight Oil Reservoirs
,”
Pet. Explor. Dev.
,
49
(
2
), pp.
382
393
.
23.
Wang
,
H.
,
Kou
,
Z.
,
Guo
,
J.
, and
Chen
,
Z.
,
2021
, “
A Semi-Analytical Model for the Transient Pressure Behaviors of a Multiple Fractured Well in a Coal Seam Gas Reservoir
,”
J. Pet. Sci. Eng.
,
198
, p.
108159
.
24.
Zhao
,
Y.
,
Jiang
,
H.
,
Rahman
,
S.
,
Yuan
,
Y.
,
Zhao
,
L.
,
Li
,
J.
,
Ge
,
J.
, and
Li
,
J.
,
2019
, “
Three-Dimensional Representation of Discrete Fracture Matrix Model for Fractured Reservoirs
,”
J. Pet. Sci. Eng.
,
180
, pp.
886
900
.
25.
Berre
,
I.
,
Doster
,
F.
, and
Keilegavlen
,
E.
,
2019
, “
Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches
,”
Transp. Porous Media
,
130
(
1
), pp.
215
236
.
26.
Xu
,
Y.
,
Cavalcante Filho
,
J. S.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2016
, “
Discrete-Fracture Modeling of Complex Hydraulic-Fracture Geometries in Reservoir Simulators
,”
SPE Reserv. Eval. Eng.
,
20
(
02
), pp.
403
422
.
27.
Wang
,
B.
, and
Fidelibus
,
C.
,
2021
, “
An Open-Source Code for Fluid Flow Simulations in Unconventional Fractured Reservoirs
,”
Geosciences
,
11
(
2
), p.
106
.
28.
Zhang
,
D.
,
Zhang
,
L.
,
Tang
,
H.
,
Yuan
,
S.
,
Wang
,
H.
,
Chen
,
S.
, and
Zhao
,
Y.
,
2021
, “
A Novel Fluid–Solid Coupling Model for the Oil–Water Flow in the Natural Fractured Reservoirs
,”
Phys. Fluids
,
33
(
3
), p.
036601
.
29.
Olorode
,
O.
,
Wang
,
B.
, and
Rashid
,
H. U.
,
2020
, “
Three-Dimensional Projection-Based Embedded Discrete-Fracture Model for Compositional Simulation of Fractured Reservoirs
,”
SPE J.
,
25
(
04
), pp.
2143
2161
.
30.
HosseiniMehr
,
M.
,
Tomala
,
J. P.
,
Vuik
,
C.
,
Kobaisi
,
M. A.
, and
Hajibeygi
,
H.
,
2022
, “
Projection-Based Embedded Discrete Fracture Model (pEDFM) for Flow and Heat Transfer in Real-Field Geological Formations With Hexahedral Corner-Point Grids
,”
Adv. Water Resour.
,
159
, p.
104091
.
31.
Hajibeygi
,
H.
, and
Jenny
,
P.
,
2011
, “
Adaptive Iterative Multiscale Finite Volume Method
,”
J. Comput. Phys.
,
230
(
3
), pp.
628
643
.
32.
Yang
,
X.
,
Meng
,
Y.
,
Shi
,
X.
, and
Li
,
G.
,
2017
, “
Influence of Porosity and Permeability Heterogeneity on Liquid Invasion in Tight Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
169
177
.
33.
Feng
,
X.
,
Peng
,
X.
,
Li
,
L.
,
Yang
,
X.
,
Wang
,
J.
,
Li
,
Q.
,
Zhang
,
C.
, and
Deng
,
H.
,
2019
, “
Influence of Reservoir Heterogeneity on Water Invasion Differentiation in Carbonate Gas Reservoirs
,”
Nat. Gas Ind. B
,
6
(
1
), pp.
7
15
.
34.
Wang
,
P.
,
Zhao
,
F.
,
Huang
,
S.
,
Zhang
,
M.
,
Feng
,
H.
,
Li
,
Y.
, and
Song
,
L.
,
2020
, “
Laboratory Investigation on Oil Increment and Water Cut Control of CO2, N2, and Gas Mixture Huff-n-Puff in Edge-Water Fault-Block Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
083001
.
35.
Blunt
,
M. J.
,
1997
, “
Pore Level Modeling of the Effects of Wettability
,”
SPE J.
,
2
(
04
), pp.
494
510
.
36.
Wan
,
Y.
,
Luo
,
W.
,
Guo
,
H.
,
Li
,
J.
, and
Zhong
,
S.
,
2020
, “
Water Invasion Characterization by Integrating PLT and Production Data in Multi-Layer Gas Reservoirs
,”
IFEDC 2019
,
Singapore
.
37.
Peaceman
,
D. W.
,
1983
, “
Interpretation of Well-Block Pressures in Numerical Reservoir Simulation With Nonsquare Grid Blocks and Anisotropic Permeability
,”
SPE J.
,
23
(
03
), pp.
531
543
.
38.
Fetkovich
,
M. J.
,
1971
, “
A Simplified Approach to Water Influx Calculations-Finite Aquifer Systems
,”
J. Pet. Technol.
,
23
(
07
), pp.
814
828
.
39.
Lie
,
K.-A.
,
2019
,
An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST)
,
Cambridge University Press
,
Cambridge
.
40.
Hajibeygi
,
H.
,
Karvounis
,
D.
, and
Jenny
,
P.
,
2011
, “
A Hierarchical Fracture Model for the Iterative Multiscale Finite Volume Method
,”
J. Comput. Phys.
,
230
(
24
), pp.
8729
8743
.
41.
Li
,
L.
, and
Lee
,
S. H.
,
2008
, “
Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media
,”
SPE Reserv. Eval. Eng.
,
11
(
04
), pp.
750
758
.
42.
Sepehrnoori
,
K.
,
Xu
,
Y.
, and
Yu
,
W.
,
2020
, “Basic EDFM Approach Using Cartesian Grid,”
Developments in Petroleum Science
,
Elsevier
,
New York
, pp.
43
97
.
43.
Liu
,
S.
,
Zhang
,
L.
,
Zhang
,
K.
,
Zhou
,
J.
,
He
,
H.
, and
Hou
,
Z.
,
2019
, “
A Simplified and Efficient Method for Water Flooding Production Index Calculations in Low Permeable Fractured Reservoir
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112905
.
You do not currently have access to this content.