Abstract

Overconsumption of fossil fuels has accelerated global warming and raised environmental air pollution levels. Recent studies have looked into the potential use of alternative, environmentally friendly fuels for diesel engines in response to the rising need for oil. Biodiesel is a renewable alternative fuel that is environmentally friendly. The significant increase in nitrogen oxide (NOx) emissions is the most notable disadvantage of biodiesel. This study examined the effect of antioxidant-treated Jatropha biodiesel on the performance and exhaust emission parameters of a VCR diesel engine. For this study, diesel, Jatropha biodiesel (B30), and phenolic antioxidant additive diphenylamine at 100 ppm are added by weight to the B30 blend named as B30 + DPA fuel blend was used. A hybrid RSM was used in conjunction with CCD and MCDM approaches such as AHP and COPRAS techniques to produce a sustainable model to derive the most accurate optimum models for output responses. From experimental findings, the antioxidant significantly reduced NOx emission. The inclusion of DPA in the tested blend lowered the average NOx emissions and brake-specific fuel consumption (BSFC) by 7.4% and 7.8%, respectively as compared with B30. Also, the brake mean effective pressure (BMEP) of B30 + DPA is 5.01% and 0.38% higher than diesel and B30, maximum cylinder pressure (CPMax) is 0.9% higher than B30, but 3.4% lower than diesel. The optimal setting of engine input parameters is recorded at compression ratio of 15, 7.5% EGR-HOT, and 12 kg load, for optimum BP, BMEP, BSFC, CPMax, and NOx emissions. Therefore, the B30 + DPA blend is suitable for enhancing diesel engine performance and minimizing exhaust emissions.

References

1.
Dharmaraja
,
J.
,
Nguyen
,
D. D.
,
Shobana
,
S.
, and
Saratale
,
G. D.
,
2019
, “
Engine Performance, Emission and Bio Characteristics of Rice Bran Oil Derived Biodiesel Blends
,”
Fuel
,
239
, pp.
153
161
.
2.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3 Nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120902
.
3.
Senthil Kumar
,
M.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2003
, “
An Experimental Comparison of Methods to Use Methanol and Jatropha Oil in a Compression Ignition Engine
,”
Biomass Bioenergy
,
25
(
3
), pp.
309
318
.
4.
Karavalakis
,
G.
,
Stournas
,
S.
, and
Karonis
,
D.
,
2010
, “
Evaluation of the Oxidation Stability of Diesel/Biodiesel Blends
,”
Fuel
,
89
(
9
), pp.
2483
2489
.
5.
Kadarohman
,
A.
,
Rohman
,
I.
,
Kusrini
,
R.
, and
Astuti
,
R. M.
,
2012
, “
Combustion Characteristics of Diesel Fuel on One Cylinder Diesel Engine Using Clove Oil, Eugenol, and Eugenyl Acetate as Fuel Bio-Additives
,”
Fuel
,
98
, pp.
73
79
.
6.
Yilmaz
,
N.
,
Ileri
,
E.
,
Atmanlı
,
A.
,
Deniz Karaoglan
,
A.
,
Okkan
,
U.
, and
Sureyya Kocak
,
M.
,
2016
, “
Predicting the Engine Performance and Exhaust Emissions of a Diesel Engine Fueled With Hazelnut Oil Methyl Ester: The Performance Comparison of Response Surface Methodology and LSSVM
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052206
.
7.
Selvabharathi
,
R.
,
Selvam
,
M.
, and
Palani
,
S. K.
,
2020
, “
Investigation of Performance, Combustion, and Emission Characteristics of Diesel Engine Equipped With Exhaust Gas Recirculation Using Ceria and Zirconia Nanoparticles-Blended Rice Bran Biodiesel
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
44
(
2
), pp.
5508
5526
.
8.
Singh
,
A.
,
Sinha
,
S.
,
Choudhary
,
A. K.
, and
Chelladurai
,
H.
,
2020
, “
Biodiesel Production Using Heterogeneous Catalyst, Application of Taguchi Robust Design and Response Surface Methodology to Optimise Diesel Engine Performance Fuelled With Jatropha Biodiesel Blends
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
2976
2987
.
9.
Dhahad
,
H. A.
, and
Fayad
,
M. A.
,
2020
, “
Role of Different Antioxidants Additions to Renewable Fuels on NOX Emissions Reduction and Smoke Number in Direct Injection Diesel Engine
,”
Fuel
,
279
, p.
118384
.
10.
Patel
,
C.
,
Hwang
,
J.
,
Bae
,
C.
, and
Agarwal
,
A. K.
,
2021
, “
Regulated, Unregulated, and Particulate Emissions From Biodiesel Blend Fueled Transportation Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
084501
.
11.
Sarin
,
A.
,
Singh
,
N. P.
,
Sarin
,
R.
, and
Malhotra
,
R. K.
,
2010
, “
Natural and Synthetic Antioxidants: Influence on the Oxidative Stability of Biodiesel Synthesized From Non-Edible Oil
,”
Energy
,
35
(
12
), pp.
4645
4648
.
12.
Razzaq
,
L.
,
Mujtaba
,
M. A.
,
Shahbaz
,
M. A.
,
Nawaz
,
S.
,
Khan
,
H. M.
,
Hussain
,
A.
,
Ishtiaq
,
U.
, et al
,
2022
, “
Effect of Biodiesel-Dimethyl Carbonate Blends on Engine Performance, Combustion and Emission Characteristics
,”
Alexandria Eng. J.
,
61
(
7
), pp.
5111
5121
.
13.
Udayakumar
,
M.
,
Sivaganesan
,
S.
, and
Sivamani
,
S.
,
2022
, “
Performance and Emissions of Lemon Peel Oil Biodiesel Powered Single Cylinder Direct Injection Diesel Engine Loaded With Ceria Nanoparticles Additives and Stabilized Zirconia Coating
,”
Mater. Today Proc.
,
66
, pp.
1994
2000
.
14.
Ali
,
O. M.
,
Mamat
,
R.
,
Abdullah
,
N. R.
, and
Abdullah
,
A. A.
,
2016
, “
Analysis of Blended Fuel Properties and Engine Performance With Palm Biodiesel–Diesel Blended Fuel
,”
Renewable Energy
,
86
, pp.
59
67
.
15.
Prabu
,
S. S.
,
Asokan
,
M. A.
,
Roy
,
R.
,
Francis
,
S.
, and
Sreelekh
,
M. K.
,
2017
, “
Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled With Waste Cooking Oil Bio-Diesel/Diesel Blends With Additives
,”
Energy
,
122
, pp.
638
648
.
16.
Chaurasiya
,
P. K.
,
Singh
,
S. K.
,
Dwivedi
,
R.
, and
Choudri
,
R. V.
,
2019
, “
Combustion and Emission Characteristics of Diesel Fuel Blended With Raw Jatropha, Soybean and Waste Cooking Oils
,”
Heliyon
,
5
(
5
), p.
e01564
.
17.
Singh
,
A.
,
Choudhary
,
A. K.
, and
Sinha
,
S.
,
2023
, “
An Investigation of Performance and Emissions of Diesel Engine Using Heterogeneous Catalyst Jatropha Biodiesel: A Sustainable Model Using Taguchi and Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
022301
.
18.
Devarajan
,
Y.
,
Munuswamy
,
D. B.
, and
Mahalingam
,
A.
,
2019
, “
Investigation on Behavior of Diesel Engine Performance, Emission, and Combustion Characteristics Using Nano-Additive in Neat Biodiesel
,”
Heat Mass Transf.
,
55
(
6
), pp.
1641
1650
.
19.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Kannan
,
C.
,
2015
, “
Optimization of Combustion Performance of Bioethanol (Water Hyacinth) Diesel Blends on Diesel Engine Using Response Surface Methodology
,”
Arab. J. Sci. Eng.
,
40
(
12
), pp.
3675
3695
.
20.
Adam
,
I. K.
,
Heikal
,
M.
,
Aziz
,
A. R. A.
, and
Yusup
,
S.
,
2018
, “
Mitigation of NOx Emission Using Aromatic and Phenolic Antioxidant-Treated Biodiesel Blends in a Multi-Cylinder Diesel Engine
,”
Environ. Sci. Pollut. Res.
,
25
(
28
), pp.
28500
28516
.
21.
Jeyakumar
,
N.
, et al
,
2022
, “
Experimental Evaluation Over the Effects of Natural Antioxidants on Oxidation Stability of Binary Biodiesel Blend
,”
Int. J. Energy Res
,
46
(
14
), pp.
20437
20461
.
22.
Lamba
,
B. Y.
,
Joshi
,
G.
,
Tiwari
,
A. K.
,
Rawat
,
D. S.
, and
Mallick
,
S.
,
2013
, “
Effect of Antioxidants on Physico-Chemical Properties of EURO-III HSD (High Speed Diesel) and Jatropha Biodiesel Blends
,”
Energy
,
60
, pp.
222
229
.
23.
Palash
,
S. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Arbab
,
M. I.
,
Masum
,
B. M.
, and
Sanjid
,
A.
,
2014
, “
Impacts of NOx Reducing Antioxidant Additive on Performance and Emissions of a Multi-Cylinder Diesel Engine Fueled With Jatropha Biodiesel Blends
,”
Energy Convers. Manag.
,
77
, pp.
577
585
.
24.
Hess
,
M. A.
,
Haas
,
M. J.
,
Foglia
,
T. A.
, and
Marmer
,
W. N.
,
2005
, “
Effect of Antioxidant Addition on NOx Emissions From Biodiesel
,”
Energy Fuels
,
19
(
4
), pp.
1749
1754
.
25.
Rizwanul Fattah
,
I. M.
,
Hassan
,
M. H.
,
Kalam
,
M. A.
,
Atabani
,
A. E.
, and
Abedin
,
M. J.
,
2014
, “
Synthetic Phenolic Antioxidants to Biodiesel: Path Toward NOx Reduction of an Unmodified Indirect Injection Diesel Engine
,”
J. Clean. Prod.
,
79
, pp.
82
90
.
26.
Alagu
,
K.
,
Nagappan
,
B.
,
Jayaraman
,
J.
, and
Arul Gnana Dhas
,
A.
,
2018
, “
Impact of Antioxidant Additives on the Performance and Emission Characteristics of CI Engine Fuelled With B20 Blend of Rice Bran Biodiesel
,”
Environ. Sci. Pollut. Res.
,
25
(
18
), pp.
17634
17644
.
27.
Yadav
,
K.
,
Kumar
,
N.
, and
Chaudhary
,
R.
,
2022
, “
Effect of Synthetic and Aromatic Amine Antioxidants on Oxidation Stability, Performance, and Emission Analysis of Waste Cooking Oil Biodiesel
,”
Environ. Sci. Pollut. Res.
,
29
(
19
), pp.
27939
27953
.
28.
Jain
,
N.
,
Singh
,
A. R.
, and
Choudhary
,
A. K.
,
2016
, “
Integrated Methodology for Supplier Selection in Supply Chain Management
,”
2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
,
Bali, Indonesia
,
Dec. 4–7
, pp.
807
811
.
29.
Erdoğan
,
S.
,
Aydın
,
S.
,
Balki
,
M. K.
, and
Sayin
,
C.
,
2020
, “
Operational Evaluation of Thermal Barrier Coated Diesel Engine Fueled With Biodiesel/Diesel Blend by Using MCDM Method Base on Engine Performance, Emission and Combustion Characteristics
,”
Renewable Energy
,
151
, pp.
698
706
.
30.
Erdoğan
,
S.
,
Balki
,
M. K.
,
Aydın
,
S.
, and
Sayin
,
C.
,
2019
, “
The Best Fuel Selection With Hybrid Multiple-Criteria Decision Making Approaches in a CI Engine Fueled With Their Blends and Pure Biodiesels Produced From Different Sources
,”
Renewable Energy
,
134
, pp.
653
668
.
31.
Yazdani-chamzini
,
A.
, and
Fouladgar
,
M. M.
,
2013
, “
Selecting the Optimal Renewable Energy Using Multi Criteria Decision Making
,”
J. Bus. Econ. Manag.
, pp.
37
41
. .
32.
Mallesham
,
D.
,
Krishnaraj
,
J.
, and
Ravikiran
,
C. H.
,
2019
, “
Selecting Optimal Combination of Operating Parameters of VCR Diesel Engine Adopting AHP
,”
Indian J. Sci. Technol.
,
12
(
33
), pp.
1
8
.
33.
Aggarwal
,
R.
, and
Singh
,
S.
,
2013
, “
AHP and Extent Fuzzy AHP Approach for Prioritization of Performance Measurement Attributes
,”
Int. J. Ind. Manuf. Eng.
,
7
(
1
), pp.
6
11
.
34.
Mittal
,
M.
,
Donahue
,
R.
, and
Winnie
,
P.
,
2015
, “
Evaluating the Influence of Exhaust Back Pressure on Performance and Exhaust Emissions Characteristics of a Multicylinder, Turbocharged, and Aftercooled Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032207
.
35.
Goswami
,
S.
, and
Mitra
,
S.
,
2020
, “
Selecting the Best Mobile Model by Applying AHP-COPRAS and AHP-ARAS Decision Making Methodology
,”
Int. J. Data Netw. Sci.
,
4
(
1
), pp.
27
42
.
36.
Chatterjee
,
P.
, and
Chakraborty
,
S.
,
2012
, “
Materials Selection Using COPRAS and COPRAS-G Methods
,”
Int. J. Mater. Struct. Integr.
,
6
(
2–4
), pp.
111
133
.
37.
Narayanamoorthy
,
S.
,
Ramya
,
L.
,
Kalaiselvan
,
S.
,
Kureethara
,
J. V.
, and
Kang
,
D.
,
2021
, “
Use of DEMATEL and COPRAS Method to Select Best Alternative Fuel for Control of Impact of Greenhouse Gas Emissions
,”
Socioecon. Plann. Sci.
,
76
, p.
100996
.
38.
Sukpancharoen
,
S.
,
Hansirisawat
,
P.
, and
Srinophakun
,
T. R.
,
2022
, “
Implementation of Response Surface to Optimum Biodiesel Power Plant Derived From Empty Fruit Bunch
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012101
.
39.
Sharma
,
P.
,
2022
, “
Prediction-Optimization of the Effects of Di-Tert Butyl Peroxide-Biodiesel Blends on Engine Performance and Emissions Using Multi-Objective Response Surface Methodology
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
072301
.
40.
Hirkude
,
J. B.
, and
Padalkar
,
A. S.
,
2014
, “
Performance Optimization of CI Engine Fuelled With Waste Fried Oil Methyl Ester-Diesel Blend Using Response Surface Methodology
,”
Fuel
,
119
, pp.
266
273
.
41.
Saaty
,
T. L.
,
2008
, “
Decision Making With the Analytic Hierarchy Process
,”
Int. J. Serv. Sci.
,
1
(
1
), pp.
83
98
.
42.
Zavadskas
,
E. K.
,
Kaklauskas
,
A.
,
Turskis
,
Z.
, and
Tamošaitiene
,
J.
,
2008
, “
Selection of the Effective Dwelling House Walls by Applying Attributes Values Determined at Intervals
,”
J. Civ. Eng. Manag.
,
14
(
2
), pp.
85
93
.
43.
Singh
,
A.
,
Sinha
,
S.
,
Choudhary
,
A. K.
,
Panchal
,
H.
,
Elkelawy
,
M.
, and
Sadasivuni
,
K. K.
,
2020
, “
Optimization of Performance and Emission Characteristics of CI Engine Fueled With Jatropha Biodiesel Produced Using a Heterogeneous Catalyst (CaO)
,”
Fuel
,
280
, p.
118611
.
44.
Rizwanul Fattah
,
I. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Mofijur
,
M.
, and
Abedin
,
M. J.
,
2014
, “
Effect of Antioxidant on the Performance and Emission Characteristics of a Diesel Engine Fueled With Palm Biodiesel Blends
,”
Energy Convers. Manag.
,
79
, pp.
265
272
.
45.
Pradeep
,
V.
, and
Sharma
,
R. P.
,
2007
, “
Use of HOT EGR for NOx Control in a Compression Ignition Engine Fuelled With Bio-Diesel From Jatropha Oil
,”
Renew. Energy
,
32
(
7
), pp.
1136
1154
.
46.
Nileshkumar
,
K. D.
,
Jani
,
R. J.
,
Patel
,
T. M.
, and
Rathod
,
G. P.
,
2015
, “
Effect of Blend Ratio of Plastic Pyrolysis Oil and Diesel Fuel on the Performance of Single Cylinder CI Engine
,”
Int. J. Sci. Technol. Eng
,
1
(
11
), pp.
195
203
.
47.
Choudhary
,
A. K.
,
Chelladurai
,
H.
, and
Kannan
,
C.
,
2016
, “
Performance Analysis of Bioethanol (Water Hyacinth) on Diesel Engine
,”
Int. J. Green Energy
,
13
(
13
), pp.
1369
1379
.
48.
Ajav
,
E. A.
,
Singh
,
B.
, and
Bhattacharya
,
T. K.
,
1999
, “
Experimental Study of Some Performance Parameters of a Constant Speed Stationary Diesel Engine Using Ethanol–Diesel Blends as Fuel
,”
Biomass Bioenergy
,
17
(
4
), pp.
357
365
.
49.
Nagappan
,
B.
,
Devarajan
,
Y.
,
Kariappan
,
E.
,
Philip
,
S. B.
, and
Gautam
,
S.
,
2021
, “
Influence of Antioxidant Additives on Performance and Emission Characteristics of Beef Tallow Biodiesel-Fuelled CI Engine
,”
Environ. Sci. Pollut. Res.
,
28
(
10
), pp.
12041
12055
.
50.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Li
,
J.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2013
, “
Performance, Combustion and Emission Characteristics of Biodiesel Derived From Waste Cooking Oils
,”
Appl. Energy
,
112
, pp.
493
499
.
51.
Kivevele
,
T. T.
,
Kristóf
,
L.
,
Bereczky
,
Á
, and
Mbarawa
,
M. M.
,
2011
, “
Engine Performance, Exhaust Emissions and Combustion Characteristics of a CI Engine Fuelled With Croton Megalocarpus Methyl Ester With Antioxidant
,”
Fuel
,
90
(
8
), pp.
2782
2789
.
52.
Debbarma
,
S.
, and
Misra
,
R. D.
,
2018
, “
Effects of Iron Nanoparticle Fuel Additive on the Performance and Exhaust Emissions of a Compression Ignition Engine Fueled With Diesel and Biodiesel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041002
.
53.
Song
,
J.
,
Feng
,
Z.
,
Lv
,
J.
, and
Zhang
,
H.
,
2020
, “
Experimental Study on Combustion and Performance of a Natural Gas-Diesel Dual-Fuel Engine at Different Pilot Diesel Injection Timing
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051013
.
54.
Emiroğlu
,
A. O.
, and
Şen
,
M.
,
2018
, “
Combustion, Performance and Exhaust Emission Characterizations of a Diesel Engine Operating With a Ternary Blend (Alcohol-Biodiesel-Diesel Fuel)
,”
Appl. Therm. Eng.
,
133
, pp.
371
380
.
55.
Ramalingam
,
S.
,
Rajendran
,
S.
, and
Ganesan
,
P.
,
2016
, “
Improving the Performance is Better and Emission Reductions From Annona Biodiesel Operated Diesel Engine Using 1, 4-Dioxane Fuel Additive
,”
Fuel
,
185
, pp.
804
809
.
56.
Ileri
,
E.
, and
Koçar
,
G.
,
2014
, “
Experimental Investigation of the Effect of Antioxidant Additives on NOx Emissions of a Diesel Engine Using Biodiesel
,”
Fuel
,
125
, pp.
44
49
.
57.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
58.
Jeyakumar
,
N.
, and
Narayanasamy
,
B.
,
2019
, “
Clove as Antioxidant Additive in Diesel–Biodiesel Fuel Blends in Diesel Engines
,”
Int. J. Green Energy
,
16
(
4
), pp.
284
292
.
You do not currently have access to this content.