Abstract

Vehicle fuel evaporative emissions are an important source of volatile organic compounds (VOCs), causing serious pollution to the environment. Plug-in hybrid electric vehicles (PHEVs) often use high-pressure fuel tank to seal the fuel vapor generated by running loss (RL), hot soak loss (HSL), and diurnal breathing loss (DBL) in the fuel tank, resulting in increased refueling emissions. With the widespread use of PHEVs, the issue of refueling emissions cannot be ignored. In this study, according to the working characteristics of PHEV, the refueling process is divided into depressurization phase and refueling phase, and a mathematical model is established for the fuel vapor emission process. The mathematical model is solved and calculated by using matlab, and compared with the experimental results. The error between experimental and calculated results of refueling emissions is only 2.45%, indicating that the established mathematical model can accurately predict the refueling emissions of PHEVs. The refueling emission experiment activities are carried out, and the influencing factors of PHEV refueling emission are discussed, including initial pressure, ambient temperature, and refueling temperature. The effect of the temperature difference between ambient temperature and refueling temperature on refueling emissions is discussed for the first time, and it is found that refueling temperature has a more significant impact on refueling emissions compared with ambient temperature. When refueling temperature increases to 303 K and 313 K compared to 293 K, refueling emission mass increases by 31.97% and 69.88% respectively.

References

1.
Romagnuolo
,
L.
,
Frosina
,
E.
,
Fortunato
,
F.
,
Andreozzi
,
A.
, and
Senatore
,
A.
,
2022
, “
1D Model for n-Butane Adsorption and Thermal Variation for EVAP Canister of Gasoline-Fueled Vehicles: Validation With Experimental Results and DFSS Optimization
,”
Appl. Therm. Eng.
,
209
, p.
118267
.
2.
Sun
,
L.
,
Zhong
,
C.
,
Peng
,
J.
,
Wang
,
T.
,
Wu
,
L.
,
Liu
,
Y.
,
Sun
,
S.
, et al
,
2021
, “
Refueling Emission of Volatile Organic Compounds From China 6 Gasoline Vehicles
,”
Sci. Total Environ.
,
789
, p.
147883
.
3.
Fang
,
Y.
,
He
,
R.
, and
Fan
,
B.
,
2019
, “
Models and Analysis of the Pressure Field for a Hybrid Electric Vehicle With a Fuel Vapor-Containment System in a Refueling Process
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092202
.
4.
Coggon
,
M. M.
,
Gkatzelis
,
G. I.
,
McDonald
,
B. C.
,
Gilman
,
J. B.
,
Schwantes
,
R. H.
,
Abuhassan
,
N.
,
Aikin
,
K. C.
, et al
,
2021
, “
Volatile Chemical Product Emissions Enhance Ozone and Modulate Urban Chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
32
), p.
e2026653118
.
5.
Wu
,
X.
, and
He
,
R.
,
2022
, “
Study on Leak Detection Model and Influencing Factors of Vehicle Fuel Evaporation System
,”
ASME J. Energy Resour. Technol.
,
144
(
12
), p.
122103
.
6.
Man
,
H.
,
Liu
,
H.
,
Niu
,
H.
,
Wang
,
K.
,
Deng
,
F.
,
Wang
,
X.
,
Xiao
,
Q.
, and
Hao
,
J.
,
2020
, “
VOCs Evaporative Emissions From Vehicles in China: Species Characteristics of Different Emission Processes
,”
Environ. Sci. Ecotechnol.
,
1
, p.
100002
.
7.
Yang
,
X.
,
Liu
,
H.
,
Cui
,
H.
,
Man
,
H.
,
Fu
,
M.
,
Hao
,
J.
, and
He
,
K.
,
2015
, “
Vehicular Volatile Organic Compounds Losses Due to Refueling and Diurnal Process in China: 2010–2050
,”
J. Environ. Sci.
,
33
, pp.
88
96
.
8.
Dong
,
Z.
,
Xing
,
J.
,
Zhang
,
F.
,
Wang
,
S.
,
Ding
,
D.
,
Wang
,
H.
,
Huang
,
C.
,
Zheng
,
H.
,
Jiang
,
Y.
, and
Hao
,
J.
,
2023
, “
Synergetic PM(2.5) and O(3) Control Strategy for the Yangtze River Delta, China
,”
J. Environ. Sci.
,
123
, pp.
281
291
.
9.
Davison
,
J.
,
Rose
,
R. A.
,
Farren
,
N. J.
,
Wagner
,
R. L.
,
Murrells
,
T. P.
, and
Carslaw
,
D. C.
,
2021
, “
Verification of a National Emission Inventory and Influence of On-Road Vehicle Manufacturer-Level Emissions
,”
Environ. Sci. Technol.
,
55
(
8
), pp.
4452
4461
.
10.
Koohi-Fayegh
,
S.
, and
Rosen
,
M. A.
,
2020
, “
A Review of Energy Storage Types, Applications and Recent Developments
,”
J. Energy Storage
,
27
, p.
101047
.
11.
Mahmoudzadeh Andwari
,
A.
,
Pesiridis
,
A.
,
Rajoo
,
S.
,
Martinez-Botas
,
R.
, and
Esfahanian
,
V.
,
2017
, “
A Review of Battery Electric Vehicle Technology and Readiness Levels
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
414
430
.
12.
Balali
,
Y.
, and
Stegen
,
S.
,
2021
, “
Review of Energy Storage Systems for Vehicles Based on Technology, Environmental Impacts, and Costs
,”
Renewable Sustainable Energy Rev.
,
135
, p.
110185
.
13.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Experimental and Theoretical Efficiency Investigation of Hybrid Electric Vehicle Battery Thermal Management Systems
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011202
.
14.
Huang
,
X.
,
Lin
,
Y.
,
Zhou
,
F.
,
Lim
,
M. K.
, and
Chen
,
S.
,
2021
, “
Agent-Based Modelling for Market Acceptance of Electric Vehicles: Evidence From China
,”
Sustain. Prod. Consum.
,
28
, pp.
206
217
.
15.
Romagnuolo
,
L.
,
Frosina
,
E.
,
Andreozzi
,
A.
,
Senatore
,
A.
, and
Fortunato
,
F.
,
2021
, “
Experimental Analysis of Evaporative Emissions of Ethanol-Blended Gasoline in Automotive Tanks at Different Temperature Conditions
,”
Fuel
,
304
, p.
121427
.
16.
Himelic
,
J. B.
, and
Kreith
,
F.
,
2011
, “
Potential Benefits of Plug-In Hybrid Electric Vehicles for Consumers and Electric Power Utilities
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031001
.
17.
Malikopoulos
,
A. A.
,
2013
, “
Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction1
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041201
.
18.
Dong
,
X.
,
Tschantz
,
M.
, and
Fu
,
J. S.
,
2015
, “
Estimating Evaporative Vapor Generation From Automobiles Based on Parking Activities
,”
Environ. Pollut.
,
202
, pp.
104
111
.
19.
Romagnuolo
,
L.
,
Yang
,
R.
,
Frosina
,
E.
,
Rizzoni
,
G.
,
Andreozzi
,
A.
, and
Senatore
,
A.
,
2019
, “
Physical Modeling of Evaporative Emission Control System in Gasoline Fueled Automobiles: A Review
,”
Renewable Sustainable Energy Rev.
,
116
, p.
109462
.
20.
Wade
,
D. T.
,
1968
, “
Factors Influencing Vehicle Evaporative Emissions
,”
SAE Int.
,
76
, pp.
811
823
.
21.
Koehl
,
W. J.
,
1969
, “
Mathematical Models for Prediction of Fuel Tank and Carburetor Evaporation Losses
,”
SAE International.
22.
Reddy
,
S. R.
,
2010
, “
Mathematical Models for Predicting Vehicle Refueling Vapor Generation
,”
SAE International.
23.
Lavoie
,
G. A.
, and
Imai
,
Y. A.
,
1998
, “
A Fuel Vapor Model for Evaporative Emissions System Design and Analysis
,”
SAE International.
24.
Lavoie
,
G. A.
, and
Smith
,
C. S.
,
1997
, “
Vapor Pressure Equations for Characterizing Automotive Fuel Behavior Under Hot Fuel Handling Conditions
,”
SAE Int.
,
106
, pp.
572
581
.
25.
Okamoto
,
K.
,
Watanabe
,
N.
,
Hagimoto
,
Y.
,
Miwa
,
K.
, and
Ohtani
,
H.
,
2009
, “
Changes in Evaporation Rate and Vapor Pressure of Gasoline With Progress of Evaporation
,”
Fire Saf. J.
,
44
(
5
), pp.
756
763
.
26.
Hassanvand
,
A.
,
Hashemabadi
,
S. H.
, and
Bayat
,
M.
,
2010
, “
Evaluation of Gasoline Evaporation During the Tank Splash Loading by CFD Techniques
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
907
913
.
27.
Huang
,
J.
,
Yuan
,
Z.
,
Duan
,
Y.
,
Liu
,
D.
,
Fu
,
Q.
,
Liang
,
G.
,
Li
,
F.
, and
Huang
,
X.
,
2022
, “
Quantification of Temperature Dependence of Vehicle Evaporative Volatile Organic Compound Emissions From Different Fuel Types in China
,”
Sci. Tot. Environ.
,
813
, p.
152661
.
28.
Tanaka
,
H.
,
Kaneko
,
T.
, and
Matsumoto
,
T.
,
2006
, “
Effects of Ethanol and ETBE Blending in Gasoline on Evaporative Emissions
,”
SAE Technical Paper Series.
29.
Martini
,
G.
,
Manfredi
,
U.
,
Mellios
,
G.
,
Krasenbrink
,
A.
, and
DeSanti
,
G.
,
2007
, “
Effects of Gasoline Vapour Pressure and Ethanol Content on Evaporative Emissions From Modern European Cars
,”
SAE International
, pp.
1698
1712
.
30.
Mellios
,
G.
,
Samaras
,
Z.
,
Martini
,
G.
,
Manfredi
,
U.
,
McArragher
,
S.
, and
Rose
,
K.
,
2009
, “
A Vehicle Testing Programme for Calibration and Validation of an Evaporative Emissions Model
,”
Fuel
,
88
(
8
), pp.
1504
1512
.
31.
Mellios
,
G.
, and
Samaras
,
Z.
,
2007
, “
An Empirical Model for Estimating Evaporative Hydrocarbon Emissions From Canister-Equipped Vehicles
,”
Fuel
,
86
(
15
), pp.
2254
2261
.
32.
Yamada
,
H.
,
Inomata
,
S.
, and
Tanimoto
,
H.
,
2015
, “
Refueling Emissions From Cars in Japan: Compositions, Temperature Dependence and Effect of Vapor Liquefied Collection System
,”
Atmos. Environ.
,
120
, pp.
455
462
.
33.
Yamada
,
H.
,
Inomata
,
S.
,
Tanimoto
,
H.
,
Hata
,
H.
, and
Tonokura
,
K.
,
2018
, “
Estimation of Refueling Emissions Based on Theoretical Model and Effects of E10 Fuel on Refueling and Evaporative Emissions From Gasoline Cars
,”
Sci. Tot. Environ.
,
622–623
, pp.
467
473
.
34.
Hata
,
H.
,
Yamada
,
H.
,
Kokuryo
,
K.
,
Okada
,
M.
,
Funakubo
,
C.
, and
Tonokura
,
K.
,
2018
, “
Estimation Model for Evaporative Emissions From Gasoline Vehicles Based on Thermodynamics
,”
Sci. Tot. Environ.
,
618
, pp.
1685
1691
.
35.
Ghadirian
,
E.
,
Brown
,
J.
, and
Wahiduzzaman
,
S.
,
2019
, “A Quasi-Steady Diffusion-Based Model for Design and Analysis of Fuel Tank Evaporative Emissions,” SAE Technical Paper Series.
36.
Liu
,
H.
,
Man
,
H.
,
Tschantz
,
M.
,
Wu
,
Y.
,
He
,
K.
, and
Hao
,
J.
,
2015
, “
VOC From Vehicular Evaporation Emissions: Status and Control Strategy
,”
Environ. Sci. Technol.
,
49
(
24
), pp.
14424
14431
.
37.
Man
,
H.
,
Liu
,
H.
,
Xiao
,
Q.
,
Deng
,
F.
,
Yu
,
Q.
,
Wang
,
K.
,
Yang
,
Z.
,
Wu
,
Y.
,
He
,
K.
, and
Hao
,
J.
,
2018
, “
How Ethanol and Gasoline Formula Changes Evaporative Emissions of the Vehicles
,”
Appl. Energy
,
222
, pp.
584
594
.
38.
Romagnuolo
,
L.
,
Frosina
,
E.
, and
Francesco
,
F.
,
2021
, “
0D Modeling of Fuel Tank for Vapor Generation
,”
Fluids Engineering Division Summer Meeting
,
Toronto, Canada
,
Aug. 10–12
.
39.
Ding
,
H.
,
He
,
R.
, and
Deng
,
X.
,
2018
, “
Modeling and Analysis of Onboard Refueling Vapor Evaporative Emission for Hybrid Electric Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012002
.
40.
Liu
,
S.
, and
He
,
R.
,
2019
, “
Modeling and Simulation of Refueling Emissions From Plug-In Hybrid Electric Vehicles
,”
SAE Int. J. Fuels Lubr.
,
12
(
3
), pp.
211
222
.
You do not currently have access to this content.